MODBUS® TCP/IP IMPLEMENTATION FOR
FULLY INTEGRATED SERVO MOTORS
CLASS 6 SMARTMOTOR™ WITH COMBITRONIC™ TECHNOLOGY

DESCRIBES THE CLASS 6 SMARTMOTOR™ SUPPORT FOR THE MODBUS® TCP/IP PROTOCOL

For the mobile version of this guide, see: animatics.com/docs/guides-html/c6_mbus_tcp/

www.animatics.com
Copyright Notice

©2015-2020, Moog Inc.

This manual, as well as the software described in it, is furnished under license and may be used or copied only in accordance with the terms of such license. The content of this manual is furnished for informational use only, is subject to change without notice and should not be construed as a commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no responsibility or liability for any errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is the user’s responsibility to decide if a particular code sample or program applies to the application being developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and the Combitronic logo are all trademarks of Moog Inc., Animatics. Modbus is a registered trademark of Modbus Organization, Inc. Other trademarks are the property of their respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it for future readers. Such notifications should contain the words "Modbus TCP/IP Guide" in the subject line and be sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Tel: 1 650-960-4215

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
USA

Tel: 1 828-837-5115
Fax: 1 540-557-6509

Support: 1 (888) 356-0357
Website: www.animatics.com
Email: animatics_sales@moog.com
Table Of Contents

Introduction ... 5
 Purpose ... 6
Safety Information .. 7
 Safety Symbols .. 7
 Other Safety Considerations .. 7
 Motor Sizing ... 7
 Environmental Considerations ... 7
 Machine Safety ... 8
 Documentation and Training .. 8
 Additional Equipment and Considerations .. 9
Safety Information Resources .. 9
 Additional Documents .. 10
 Related Guides .. 10
 Other Documents ... 10
 Additional Resources .. 11
 Modbus Resources ... 11

Motor Pinouts, Connections and Status LEDs ... 12
 Connecting the System (TCP/IP) ... 13
 Class 6 M-Style EIP Motors: Connectors and Pinouts .. 13
 Moog Animatics Industrial Ethernet Cables .. 14
 M-style to M-style Ethernet Cable .. 14
 M-style to RJ45 Ethernet Cable .. 14
 Ethernet Custom Cable .. 14
 Cable Diagram .. 15
 Understanding the Status LEDs .. 16

Using Modbus ... 17
 Modbus TCP/IP Description ... 18
 TCP Connection .. 18
 Setting the IP Address ... 18
 Supported Function Codes .. 19
 16-Bit Access ... 19
 32-Bit Access ... 19
 Input Registers - 3X ... 20
 3X Mapping ... 20
Holding Registers - 4X ... 21
4X Mapping .. 21
Modbus TCP/IP Communications Example 22
 Modbus TCP/IP Communication Setup 22
Modbus TCP/IP Sample Command Sequences 22
 Read input registers (status word 3 and 4) 24
 Read holding registers b and c .. 25
 Write single register ... 26
 Write multiple registers ... 27

Troubleshooting ... 28
Introduction

This chapter provides information on the purpose and scope of this manual. It also provides information on safety notation, related documents and additional resources.

Purpose ... 6

Safety Information .. 7
 Safety Symbols ... 7
 Other Safety Considerations .. 7
 Motor Sizing .. 7
 Environmental Considerations ... 7
 Machine Safety .. 8
 Documentation and Training .. 8
 Additional Equipment and Considerations ... 9
 Safety Information Resources .. 9

Additional Documents .. 10
 Related Guides .. 10
 Other Documents .. 10

Additional Resources .. 11

Modbus Resources .. 11
Purpose

This Modbus TCP/IP protocol support provided by the Moog Animatics Class 6 EtherNet/IP (EIP) SmartMotor™. It describes the major concepts that must be understood to integrate a SmartMotor slave with a PLC or other Modbus TCP/IP master. However, it does not cover all the low-level details of the protocol.

NOTE: The feature set described in this version of the manual refers to motor firmware 6.0.2.28.

NOTE: A "keepalive" feature, which resets broken connections, is available with firmware 6.0.2.41 or higher with netX firmware (NXF) version 3.4.0.5 or higher. Keepalive automatically clears SmartMotor connection resources if a connection is not cleanly closed.

This manual is intended for programmers or system developers who have read and understand the Modbus Messaging on TCP/IP Implementation Guide V1.0b, which is published and maintained by Modbus.org. Therefore, this manual is not a tutorial on that specification or the Modbus TCP/IP protocol. Instead, it should be used to understand the specific implementation details for the Moog Animatics SmartMotor. For a general overview of Modbus TCP/IP, see the FAQ page and other resources at www.modbus.org.
Safety Information

This section describes the safety symbols and other safety information.

Safety Symbols

The manual may use one or more of the following safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard, where failure to follow the instructions could result in serious injury to the operator or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to follow the instructions could result in slight injury to the operator or minor damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations

The Moog Animatics SmartMotors are supplied as components that are intended for use in an automated machine or system. As such, it is beyond the scope of this manual to attempt to cover all the safety standards and considerations that are part of the overall machine/system design and manufacturing safety. Therefore, the following information is intended to be used only as a general guideline for the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk Assessment" and to ensure that the machine/system and its safeguards comply with the safety standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the locale where the machine is being installed and operated. For more details, see Machine Safety on page 8.

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are properly sized for the specific application. Undersized motors may perform poorly, cause excessive downtime or cause unsafe operating conditions by not being able to handle the loads placed on them. The System Best Practices document, which is available on the Moog Animatics website, contains information and equations that can be used for selecting the appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the approved and validated system. Specification changes or firmware upgrades require the approval of the system designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating environment for dust, high-humidity or presence of water (for example, a food-processing environment that requires water or steam wash down of equipment), corrosives or chemicals that may come in contact with the machine, etc. Moog Animatics manufactures specialized IP-rated motors for operating in extreme conditions. For details, see the Moog Animatics Product Catalog.
Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the machine/system builder must perform a "Risk Assessment", which is often based on the ISO 13849 standard. The design/implementation of barriers, emergency stop (E-stop) mechanisms and other safeguards will be driven by the Risk Assessment and the safety standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the locale where the machine is being installed and operated. The methodology and details of such an assessment are beyond the scope of this manual. However, there are various sources of Risk Assessment information available in print and on the internet.

NOTE: The following list is an example of items that would be evaluated when performing the Risk Assessment. Additional items may be required. The safeguards must ensure the safety of all personnel who may come in contact with or be in the vicinity of the machine.

In general, the machine/system safeguards must:

- Provide a barrier to prevent unauthorized entry or access to the machine or system. The barrier must be designed so that personnel cannot reach into any identified danger zones.

- Position the control panel so that it is outside the barrier area but located for an unrestricted view of the moving mechanism. The control panel must include an E-stop mechanism. Buttons that start the machine must be protected from accidental activation.

- Provide E-stop mechanisms located at the control panel and at other points around the perimeter of the barrier that will stop all machine movement when tripped.

- Provide appropriate sensors and interlocks on gates or other points of entry into the protected zone that will stop all machine movement when tripped.

- Ensure that if a portable control/programming device is supplied (for example, a hand-held operator/programmer pendant), the device is equipped with an E-stop mechanism.

 NOTE: A portable operation/programming device requires many additional system design considerations and safeguards beyond those listed in this section. For details, see the safety standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the locale where the machine is being installed and operated.

- Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys, tooling, etc.).

- Prevent contact with a part that is thrown from the machine tooling or other part-handling equipment.

- Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other hazards that may be present at the machine.

- Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

- Provide a proper control system, program logic and error checking to ensure the safety of all personnel and equipment (for example, to prevent a run-away condition). The control system must be designed so that it does not automatically restart the machine/system after a power failure.

- Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety, operation, maintenance and programming, along with training for all machine operators, maintenance technicians, programmers, and other personnel who may have access to the machine. This documentation must include proper lockout/tagout procedures for maintenance and programming operations.
It is the responsibility of the operating company to ensure that:

- All operators, maintenance technicians, programmers and other personnel are tested and qualified before acquiring access to the machine or system.
- The above personnel perform their assigned functions in a responsible and safe manner to comply with the procedures in the supplied documentation and the company safety practices.
- The equipment is maintained as described in the documentation and training supplied by the machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the need for additional equipment. In general, it is the responsibility of the operating company to ensure that:

- Unauthorized access to the machine is prevented at all times.
- The personnel are supplied with the proper equipment for the environment and their job functions, which may include: safety glasses, hearing protection, safety footwear, smocks or aprons, gloves, hard hats and other protective gear.
- The work area is equipped with proper safety equipment such as first aid equipment, fire suppression equipment, emergency eye wash and full-body wash stations, etc.
- There are no modifications made to the machine or system without proper engineering evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources

Additional SmartMotor safety information can be found on the Moog Animatics website; open the file "109_Controls, Warnings and Cautions.pdf" located at:

http://www.animatics.com/support/moog-animatics-catalog.html

OSHA standards information can be found at:

ANSI-RIA robotic safety information can be found at:
http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

UL standards information can be found at:
http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:
http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:
Additional Documents

The Moog Animatics website contains additional documents that are related to the information in this manual. Please refer to the following list.

Related Guides

- *Class 6 SmartMotor™ Installation & Startup Guide*
 http://www.animatics.com/cl-6-install-startup-guide

- *SmartMotor™ Developer's Guide*
 http://www.animatics.com/smартmotor-developers-guide

- *SmartMotor™ System Best Practices*
 http://www.animatics.com/system-best-practices-application-note

Other Documents

- *SmartMotor™ Product Certificate of Conformance*

- *SmartMotor™ UL Certification*
 http://www.animatics.com/download/MA_UL_online_listing.pdf

- *SmartMotor Developer's Worksheet*
 (interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port Status, Serial Port Status, RMODE Decoder and Syntax Error Codes)
 http://www.animatics.com/tools

- *Moog Animatics Product Catalog*
 http://www.animatics.com/support/moog-animatics-catalog.html
Additional Resources

The Moog Animatics website contains useful resources such as product information, documentation, product support and more. Please refer to the following addresses:

- General company information:
 http://www.animatics.com

- Product information:

- Product support (Downloads, How To videos, Forums, Knowledge Base, and FAQs):
 http://www.animatics.com/support.html

- Sales and distributor information:
 http://www.animatics.com/sales-offices.html

- Application ideas (including videos and sample programs):
 http://www.animatics.com/applications.html

Modbus Resources

Modbus is a common standard maintained by Modbus.org:

- Modbus.org website:
 http://www.modbus.org
Motor Pinouts, Connections and Status LEDs

The following sections describe the motor pinouts, system connections and the status LEDs.

Connecting the System (TCP/IP) ...13
 Class 6 M-Style EIP Motors: Connectors and Pinouts13
 Moog Animatics Industrial Ethernet Cables ..14
 M-style to M-style Ethernet Cable ...14
 M-style to RJ45 Ethernet Cable ..14
 Ethernet Custom Cable ..14
 Cable Diagram ..15

Understanding the Status LEDs ...16
Connecting the System (TCP/IP)

The following sections show system connections and cable diagrams for typical Class 6 M-style EIP motors.

Class 6 M-Style EIP Motors: Connectors and Pinouts

The following figure provides a brief overview of the connectors and pinouts available on the Class 6 M-style SmartMotors. Additional connector specifications are available in the *Class 6 SmartMotor™ Installation & Startup Guide*.

RS-485 channel 0 (pins 2 and 3 on the Communication connector) is the RS-485 connection for Modbus.

![Connectors and Pinouts Diagram]

I/Os

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
<th>INPUT OR OUTPUT</th>
<th>POSSIBLE (SELECTABLE) FUNCTIONS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN0</td>
<td>INPUT</td>
<td>GENERAL PURPOSE</td>
<td>GENERAL PURPOSE</td>
</tr>
<tr>
<td>2</td>
<td>IN1</td>
<td>INPUT</td>
<td>GENERAL PURPOSE</td>
<td>GENERAL PURPOSE</td>
</tr>
<tr>
<td>3</td>
<td>IN2/POS LIMIT</td>
<td>INPUT</td>
<td>POSITIVE LIMIT OR GENERAL PURPOSE</td>
<td>POSITIVE LIMIT</td>
</tr>
<tr>
<td>4</td>
<td>IN3/NEG LIMIT</td>
<td>INPUT</td>
<td>NEGATIVE LIMIT OR GENERAL PURPOSE</td>
<td>NEGATIVE LIMIT</td>
</tr>
<tr>
<td>5</td>
<td>ENC A+</td>
<td>INPUT</td>
<td>GENERAL PURPOSE, OR GENERAL PURPOSE</td>
<td>INDEX CAPTURE</td>
</tr>
<tr>
<td>6</td>
<td>ENC A-</td>
<td>INPUT</td>
<td>GENERAL PURPOSE, OR INTERNAL ENCODER</td>
<td>INDEX CAPTURE</td>
</tr>
<tr>
<td>7</td>
<td>ENC B+</td>
<td>INPUT</td>
<td>GENERAL PURPOSE, OR COMMAND OR INDEX CAPTURE</td>
<td>INDEX CAPTURE</td>
</tr>
<tr>
<td>8</td>
<td>ENC B-</td>
<td>INPUT</td>
<td>GENERAL PURPOSE, OR INTERNAL ENCODER</td>
<td>INDEX CAPTURE</td>
</tr>
</tbody>
</table>

NOTE: 2 AMPS MAX, SUPPLIED FROM POWER INPUT PIN 1

Ethernet/IP

NOTE: When daisy-chaining SmartMotors for a Modbus TCP/IP network, there is no specific IN or OUT Ethernet port. In other words, either Ethernet port can be used for the input or the output.
Moog Animatics Industrial Ethernet Cables

The following Industrial Ethernet cables are available from Moog Animatics.

M-style to M-style Ethernet Cable

This cable has M12 male threaded connectors at both ends. It is available in 1, 3, 5 and 10 meter lengths. For the standard cable, use part number CBLIP-ETH-MM-xM, where "x" denotes the cable length. A right-angle version is also available; use part number CBLIP-ETH-MM-xMRA.

M-style to RJ45 Ethernet Cable

This cable has an M12 male threaded connector at one end, and an RJ45 male connector at the opposite end. It is available in 1, 3, 5 and 10 meter lengths. For the standard cable, use part number CBLIP-ETH-MRJ-xM, where "x" denotes the cable length. A right-angle version is also available; use part number CBLIP-ETH-MRJ-xMRA.

Ethernet Custom Cable

The following figure provides details for creating a custom shielded Ethernet cable.

NOTE: The motor end of the cable requires an industrial Ethernet connector.

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+TX</td>
<td>1</td>
<td>+TX</td>
</tr>
<tr>
<td>2</td>
<td>-TX</td>
<td>2</td>
<td>+RX</td>
</tr>
<tr>
<td>3</td>
<td>+RX</td>
<td>3</td>
<td>-TX</td>
</tr>
<tr>
<td>4</td>
<td>No Connection</td>
<td>4</td>
<td>-RX</td>
</tr>
<tr>
<td>5</td>
<td>No Connection</td>
<td>5</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>-RX</td>
<td>6</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>No Connection</td>
<td>7</td>
<td>No Connection</td>
</tr>
<tr>
<td>8</td>
<td>No Connection</td>
<td>8</td>
<td>No Connection</td>
</tr>
<tr>
<td>12</td>
<td>Shield tied to motor housing</td>
<td>13</td>
<td>Shield tied to RJ45S connector</td>
</tr>
</tbody>
</table>

![Diagram of RJ45S Connector (EtherNet/IP master end of cable) and Industrial Ethernet Connector (Motor end of cable).]
Cable Diagram

The following figures show a Modbus TCP/IP master connected to a series of slave devices. Although only two configurations are shown, many different network topologies are possible. Other devices (routers, gateways, etc.) may also be on the network. For details, see *Modbus Messaging on TCP/IP Implementation Guide V1.0b*.

Modbus TCP/IP Bus

Example Daisy-Chain Configuration

![Daisy-Chain Configuration Diagram]

NOTE: Either Ethernet port can be used to daisy-chain the motors.

Modbus TCP/IP Bus

Example Star Configuration

![Star Configuration Diagram]

NOTE: Either Ethernet port can be used to connect the motors.

NOTE: Unlike other fieldbus protocols, Modbus TCP/IP does not require terminators at each end of the network bus.
Understanding the Status LEDs

The following figure and tables describe the functionality of the Modbus TCP/IP Status LEDs on the Class 6 EIP SmartMotor.

LED 0: Motor Drive LED
- **Off**: No power
- **Solid green**: Drive on, trajectory in progress
- **Solid red**: Faulted or no drive enable input

LED 2: EtherNet/IP Network Status LED
- **Off**: No power or no IP address
- **Flash red/grn**: Power-up self test
- **Flash green**: No connections
- **Solid green**: Connected
- **Flash red**: Connection timeout
- **Solid red**: Duplicate IP

LED 4: EtherNet/IP Link 1 Input LED
- **Off**: No/bad cable; no/bad Link port
- **Solid green**: Link established
- **Blinking green**: Activity

LED Status on Power-up:
- With no program and the travel limit inputs are low:
 - LED 0 solid red; motor is in fault state due to travel limit fault
 - LED 1 off
- With no program and the travel limits are high:
 - LED 0 solid red for 500 milliseconds then flashing green
 - LED 1 off
- With a program that only disables travel limits:
 - LED 0 red for 500 milliseconds then flashing green
 - LED 1 off

LED 1: Motor Busy LED
- **Off**: Not busy
- **Solid green**: Drive on, trajectory in progress
- **Flash # red**: Flashes fault code* (see below) when Drive LED is solid red

LED 3: EtherNet/IP Module Status LED
- **Off**: No power
- **Flash red/grn**: Power-up self test
- **Flash green**: Standby
- **Solid green**: Device operational
- **Flash red**: Minor fault
- **Solid red**: Major fault

LED 5: EtherNet/IP Link 2 Output LED
- **Off**: No/bad cable; no/bad Link port
- **Solid green**: Link established
- **Blinking green**: Activity

USB Active LED
- **Flash green**: Active
- **Flash red**: Suspended
- **Solid red**: USB power detected, no configuration

SD Card LED (for SD Card-equipped motors)
- **Off**: No card, bad or damaged card
- **Blinking green**: Busy, do not remove card
- **Solid green**: Card detected
- **Solid red**: Card with no SmartMotor data

LED 1 Fault Codes:
*Busy LED pauses for 2 seconds before flashing the code

- Flash 1: Bus Voltage
- Flash 2: Over Current
- Flash 3: Excessive Temperature
- Flash 4: Excessive Position
- Flash 5: Velocity Limit
- Flash 6: dE/dt - First derivative of position error is excessive
- Flash 7: Hardware Positive Limit Reached
- Flash 8: Hardware Negative Limit Reached
- Flash 9: Software Positive Travel Limit Reached
- Flash 10: Software Negative Travel Limit Reached

Moog Animatics Class 6 SmartMotor™ Modbus TCP/IP Guide, Rev. C
Page 16 of 30
Using Modbus

The following sections describe how to enable Modbus communications with your SmartMotor, along with information on supported function codes, input registers and holding registers.

Modbus TCP/IP Description ...18
 TCP Connection ..18
 Setting the IP Address ..18

Supported Function Codes ..19
 16-Bit Access ...19
 32-Bit Access ...19

Input Registers - 3X ..20
 3X Mapping ..20

Holding Registers - 4X ..21
 4X Mapping ..21

Modbus TCP/IP Communications Example ..22
 Modbus TCP/IP Communication Setup ..22

Modbus TCP/IP Sample Command Sequences ..22
 Read input registers (status word 3 and 4) ..24
 Read holding registers b and c ..25
 Write single register ..26
 Write multiple registers ..27
Modbus TCP/IP Description

Modbus TCP/IP is a standard that allows industrial devices to communicate over Ethernet TCP/IP connections. The Moog Animatics Class 6 SmartMotor supports communication to a PLC, HMI, or other host device over Ethernet TCP/IP.

NOTE: The Moog Animatics Class 6 SmartMotor also supports the Modbus RTU protocol over RS-485 serial connections. Refer to that guide for details.

Unlike Modbus RTU communication, the OCHN command is not needed or used for Modbus TCP/IP communication. In fact, once the motors are connected to the Ethernet network, they will be able to communicate with the Modbus TCP/IP master if DHCP is used, or they will simply need a static IP address if DHCP is not being used.

TCP Connection

Modbus TCP/IP on the SmartMotor:
- Allows for three concurrent (simultaneous) TCP connections.
- Uses TCP port 502.

Setting the IP Address

As mentioned previously, for Modbus TCP/IP on the SmartMotor, the IP address can be either static or dynamic (DHCP). The default operation is dynamic addressing. For applications requiring a fixed IP address, it must be set using the IP control command (IPCTL) through either:
- The USB port, or
- The RS-485 port

The IPCTL command allows you to change the IP address of the SmartMotor. The default setting is "0.0.0.0" for IP address, subnet mask, and gateway disabled/automatic. Three function codes (0, 1, and 2) are available for setting a specific IP address, a specific subnet mask, and/or a specific gateway address, respectively. It uses the form:

\[\text{IPCTL(function,"string")} \]

- function is one of the following codes:

<table>
<thead>
<tr>
<th>function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Set IP address</td>
</tr>
<tr>
<td>1</td>
<td>Set subnet mask</td>
</tr>
<tr>
<td>2</td>
<td>Set gateway</td>
</tr>
</tbody>
</table>

- "string" is formatted as an IP address and entered as a string

For example:

\[\text{IPCTL(0,"192.168.0.10") 'Set the IP address to 192.168.0.10} \]

For more details on the IPCTL command, see the SmartMotor™ Developer's Guide. For details on the USB and RS-485 ports, see the Class 6 SmartMotor™ Installation & Startup Guide.
Supported Function Codes

A small set of Modbus function codes are supported for simple access to variables and status words. The GOSUB feature of the AniBasic language can be accessed through register write as well.

16-Bit Access

The following table shows the codes, descriptions and functions for 16-bit access.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Read Holding Registers (4X space)</td>
<td>Read 16-bit value or values.</td>
</tr>
<tr>
<td>04</td>
<td>Read Input Registers (3X space)</td>
<td>Read 16-bit (read-only) value or values.</td>
</tr>
<tr>
<td>06</td>
<td>Write Single Register (4X space)</td>
<td>Write 16-bit value or values.</td>
</tr>
<tr>
<td>16</td>
<td>Write Multiple Registers (4X space)</td>
<td>Write 16-bit value or values.</td>
</tr>
</tbody>
</table>

32-Bit Access

The following table shows the codes, descriptions and functions for 32-bit access.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Read Holding Registers (4X space)</td>
<td>Read 32-bit value or values.</td>
</tr>
<tr>
<td>16</td>
<td>Write Multiple Registers (4X space)</td>
<td>Write 32-bit value or values.</td>
</tr>
</tbody>
</table>

NOTE: Low word of 32-bit values is stored at lower Modbus address.
Input Registers - 3X

The Modbus 3X input registers are 16-bit registers used to read data to the PLC (i.e., they are read only). Regarding the SmartMotor, the set of data that can be read includes the Moog Animatics AniBasic "RW(x)" status words — the physical I/O state inputs RW(16) and, optionally, RW(17), and other RW(x) status words. Refer to the following table.

3X Mapping

The following table describes the 3X mapping.

<table>
<thead>
<tr>
<th>Address (hex)</th>
<th>Byte #</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>2</td>
<td>Status Register 0</td>
<td>Drive state and hardware limits</td>
</tr>
<tr>
<td>0x0001</td>
<td>2</td>
<td>Status Register 1</td>
<td>Index capture and software limits</td>
</tr>
<tr>
<td>0x0002</td>
<td>2</td>
<td>Status Register 2</td>
<td>Programs and communications</td>
</tr>
<tr>
<td>0x0003</td>
<td>2</td>
<td>Status Register 3</td>
<td>PID and motion</td>
</tr>
<tr>
<td>0x0004</td>
<td>2</td>
<td>Status Register 4</td>
<td>Timers</td>
</tr>
<tr>
<td>0x0005</td>
<td>2</td>
<td>Status Register 5</td>
<td>Interrupts</td>
</tr>
<tr>
<td>0x0006</td>
<td>2</td>
<td>Status Register 6</td>
<td>Commutation and bus</td>
</tr>
<tr>
<td>0x0007</td>
<td>2</td>
<td>Status Register 7</td>
<td>Trajectory details</td>
</tr>
<tr>
<td>0x0008</td>
<td>2</td>
<td>Status Register 8</td>
<td>Cam and interpolation user bits</td>
</tr>
<tr>
<td>0x0009</td>
<td>2</td>
<td>Status Register 9</td>
<td>N/A</td>
</tr>
<tr>
<td>0x000a</td>
<td>2</td>
<td>Status Register 10</td>
<td>N/A</td>
</tr>
<tr>
<td>0x000b</td>
<td>2</td>
<td>Status Register 11</td>
<td>N/A</td>
</tr>
<tr>
<td>0x000c</td>
<td>2</td>
<td>Status Register 12</td>
<td>User bits word 0</td>
</tr>
<tr>
<td>0x000d</td>
<td>2</td>
<td>Status Register 13</td>
<td>User bits word 1</td>
</tr>
<tr>
<td>0x000e</td>
<td>2</td>
<td>Status Register 14</td>
<td>N/A</td>
</tr>
<tr>
<td>0x000f</td>
<td>2</td>
<td>Status Register 15</td>
<td>N/A</td>
</tr>
<tr>
<td>0x0010</td>
<td>2</td>
<td>Status Register 16</td>
<td>I/O state, word 0</td>
</tr>
<tr>
<td>0x0011</td>
<td>2</td>
<td>Status Register 17</td>
<td>I/O state, word 1 (D-style with AD1 option only)</td>
</tr>
</tbody>
</table>

NOTES:
1. Addresses shown are zero-based. Legacy Modbus addresses may be translated differently by the host controller.
2. Refer to the SmartMotor Developer’s Guide for a full description of status word functionality.

LIMITATIONS: Up to 125 words can be read at a time (for the purposes of the input registers, reading is only meaningful up to the index shown in the previous table).
Holding Registers - 4X

The Modbus 4X holding registers are 16-bit registers used to read data to and write data from the PLC. Regarding the SmartMotor, the set of data that can be read/written includes the Moog Animatics AniBasic variables a-zzz, ab, aw and al, and the GOSUB command. Refer to the following table.

4X Mapping

The following table describes the 4X mapping.

<table>
<thead>
<tr>
<th>Address (hex)</th>
<th>Byte #</th>
<th>AniBasic Command Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2000-2033</td>
<td>-</td>
<td>a to z</td>
<td>User memory</td>
</tr>
<tr>
<td>0x2034-2067</td>
<td>-</td>
<td>aa to zz</td>
<td>User memory</td>
</tr>
<tr>
<td>0x2068-209B</td>
<td>-</td>
<td>aaa to zzz</td>
<td>User memory, includes zzz</td>
</tr>
<tr>
<td>0x209C-0x2101</td>
<td>ab[0]-ab[203]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>al[0]-al[50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aw[0]-aw[101]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x8004</td>
<td></td>
<td>GOSUB(label)</td>
<td>Execute subroutine specified by label</td>
</tr>
</tbody>
</table>

NOTES:

1. Addresses shown are zero-based. Legacy Modbus addresses may be translated differently by the host controller.

2. User memory is word-addressable only. The low-addressed word is the lower half of a 32-bit number in the controller.

LIMITATIONS: Up to 125 words can be read at a time. However, if accessing SmartMotor variables a, b, c, etc., which are 2 words each as 32-bit variables, then 62 variables can be accessed in a read operation. Writing multiple registers has a restriction of up to 123 words (61 variables that are 32-bits each).
Modbus TCP/IP Communications Example

This topic contains Modbus communications examples.

Modbus TCP/IP Communication Setup

This section describes a typical setup for Modbus TCP/IP communications.

- Modbus TCP/IP requires the Class 6 "-EIP" SmartMotor model. Verify that you have the correct motor.
- Verify the type of motor addressing being used. Note the following:
 - For dynamic IP (DHCP) addressing (SmartMotor default), there is no need to set an IP address on the motor.
 - For static IP addressing, you will need to set a static IP address on the motor. For more details, see Setting the IP Address on page 18.
- There is no need to open the Modbus TCP/IP port, it is already open by default (using TCP port 502). Therefore, no special program is needed.
- There is no need for a node ID—the IP address serves as the motor’s identification. Note that the Node ID is typically assumed to be "0" in Modbus TCP/IP.

Modbus TCP/IP Sample Command Sequences

This topic contains some sample Modbus TCP/IP (Ethernet) command sequences. These examples show the data sent from and received by the Modbus master communicating with a SmartMotor. For these examples, a utility software is used to show the communications between the Modbus master and SmartMotor.

NOTE: There are various Modbus TCP/IP utilities available for this purpose. Therefore, Moog Animatics does not endorse any particular one—the selection depends on the requirements of your application.

As compared to Modbus RTU, there are some differences in the structure of the packet:

- No CRC (the TCP channel handles that inherently, so Modbus TCP/IP drops the use of its own CRC).
- An additional header for Modbus TCP/IP that contains the Unit ID.

NOTE: The Unit ID is similar to the Slave ID in Modbus RTU. However, the Unit ID is typically set to 0. For Modbus TCP/IP, the IP address is the mechanism for uniquely addressing the slave device.

For each of the following sections:

- Section title = action being performed
- Output = formatted byte stream sent from master to the SmartMotor
- Input = formatted byte stream received by the master from the SmartMotor
For each of the following tables:

NOTE: A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of bytes shown in the Output/Input strings above the table (i.e., no pause or null for the blank cells).

These items unique to the Modbus TCP/IP header:
- Transaction ID = Transaction Identifier, match in request and response
- Protocol = for Modbus TCP/IP, this is always 0
- Length = specifies the number of bytes in the frame
- Unit ID = the address of the slave device (for the SmartMotor, this is typically 0, and the IP address is used as the slave device address)

These items are common to Modbus RTU and Modbus TCP/IP:
- Function Code = function code (see Supported Function Codes on page 19)
- Start Addr = start address in memory or single register address (see Input Registers - 3X on page 20 and Holding Registers - 4X on page 21)
- No. of Reg. = number of coils or number of registers
- Byte Cnt = byte count
- Data (start address + 0) = data word 0
- Data (start address + 1) = data word 1
- Data (start address + 2) = data word 2
- Data (start address + 3) = data word 3

NOTE: Unlike Modbus RTU, there is no CRC in Modbus TCP/IP.
Read input registers (status word 3 and 4)

Output: 00 01 00 00 00 06 00 04 00 03 00 02
Input: 00 01 00 00 00 07 00 04 04 30 10 00 00

RW(3) 12304 (0x3010)
RW(4) 0 (0x0000)

<table>
<thead>
<tr>
<th>Modbus TCP Header</th>
<th>Modbus Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans ID</td>
<td>Protocol</td>
</tr>
<tr>
<td>Output</td>
<td>00 01</td>
</tr>
<tr>
<td>Input</td>
<td>00 01</td>
</tr>
</tbody>
</table>

A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of bytes shown in the Output/Input strings above the table (i.e., no pause or null for the blank cells).

A Modbus Utility Showing Output / Input Data
Read holding registers b and c

In the SmartMotor:

\[b = 33686018 \ (0x02020202) \]
\[c = 305419896 \ (0x12345678) \]

Output: 00 03 00 00 00 06 00 03 20 02 00 04
Input: 00 03 00 00 00 0b 00 03 08 02 02 02 02 56 78 12 34

<table>
<thead>
<tr>
<th>Modbus TCP Header</th>
<th>Modbus Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans ID</td>
<td>Protocol</td>
</tr>
<tr>
<td>Output</td>
<td>00 03</td>
</tr>
<tr>
<td>Input</td>
<td>00 03</td>
</tr>
</tbody>
</table>

A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of bytes shown in the Output/Input strings above the table (i.e., no pause or null for the blank cells).

A Modbus Utility Showing Output / Input Data
Write single register

(Call GOSUB at address 0x8004 / 32772 in this example.)

Output: 00 04 00 00 00 06 00 06 80 04 00 01

Input: 00 04 00 00 00 06 00 06 80 04 00 01

<table>
<thead>
<tr>
<th>Modbus TCP Header</th>
<th>Modbus Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans ID</td>
<td>Protocol</td>
</tr>
<tr>
<td>Output</td>
<td>00 04</td>
</tr>
<tr>
<td>Input</td>
<td>00 04</td>
</tr>
</tbody>
</table>

A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of bytes shown in the Output/Input strings above the table (i.e., no pause or null for the blank cells).

A Modbus Utility Showing Output / Input Data
Write multiple registers

<table>
<thead>
<tr>
<th>Address = Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192 = 0x0001</td>
</tr>
<tr>
<td>8193 = 0x0002</td>
</tr>
<tr>
<td>8194 = 0x0003</td>
</tr>
<tr>
<td>8195 = 0x0004</td>
</tr>
</tbody>
</table>

Output: 00 05 00 00 00 0f 00 10 20 00 00 04 08 00 01 00 02 00 03 00 04
Input: 00 05 00 00 00 06 00 10 20 00 00 04

Ra 131073 (0x00020001)
Rb 262147 (0x00040003)

<table>
<thead>
<tr>
<th>Trans ID</th>
<th>Protocol</th>
<th>Length</th>
<th>Unit ID</th>
<th>Funct</th>
<th>Start Addr</th>
<th>No. of Reg.</th>
<th>Byte Cnt</th>
<th>Data start +0</th>
<th>Data start +1</th>
<th>Data start +2</th>
<th>Data start +3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>00 05</td>
<td>00 00</td>
<td>00 0f</td>
<td>00</td>
<td>10</td>
<td>20 00</td>
<td>00 04</td>
<td>08</td>
<td>00 01</td>
<td>00 02</td>
<td>00 03</td>
</tr>
<tr>
<td>Input</td>
<td>00 05</td>
<td>00 00</td>
<td>00 06</td>
<td>00</td>
<td>10</td>
<td>20 00</td>
<td>00 04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of bytes shown in the Output/Input strings above the table (i.e., no pause or null for the blank cells).
Troubleshooting

The following table provides troubleshooting information for solving common problems. For additional support resources, see the Moog Animatics Support page at:

http://www.animatics.com/support.html

<table>
<thead>
<tr>
<th>Issue</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication and Control Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor control power light does not illuminate.</td>
<td>Control power is off, disconnected or incorrectly wired.</td>
<td>Check that control power is connected to the proper pins and turned on. For connection details, see Connecting the System on page 1.</td>
</tr>
<tr>
<td></td>
<td>Motor has routed drive power through drive-enable pins.</td>
<td>Ensure cabling is correct and drive power is not being delivered through the 15-pin connector.</td>
</tr>
<tr>
<td></td>
<td>Motor is equipped with the DE option.</td>
<td>To energize control power, apply 24-48 VDC to pin 15 and ground to pin 14.</td>
</tr>
<tr>
<td>Motor does not communicate with SMI.</td>
<td>Transmit, receive or ground pins are not connected correctly.</td>
<td>Ensure that transmit, receive and ground are all connected properly to the host PC.</td>
</tr>
<tr>
<td></td>
<td>Motor program is stuck in a continuous loop or is disabling communications.</td>
<td>To prevent the program from running on power up, use the Communications Lockup Wizard located on the SMI software Communications menu.</td>
</tr>
<tr>
<td>Motor does not communicate with Modbus TCP/IP.</td>
<td>Incorrect Modbus TCP/IP address.</td>
<td>The IP address = the motor’s address. If DHCP is not used, check that the fixed IP/motor address is correct. NOTE: Each network device must have a unique IP address.</td>
</tr>
<tr>
<td></td>
<td>Permissions settings</td>
<td>See ETHCTL(101,<value>)</td>
</tr>
<tr>
<td>Motor disconnects from SMI sporadically.</td>
<td>COM port buffer settings are too high.</td>
<td>Adjust the COM port buffer settings to their lowest values.</td>
</tr>
<tr>
<td></td>
<td>Poor connection on serial cable.</td>
<td>Check the serial cable connections and/or replace it.</td>
</tr>
<tr>
<td></td>
<td>Power supply unit (PSU) brownout.</td>
<td>PSU may be too high-precision and/or undersized for the application, which causes it to brown-out during motion. Make moves less aggressive, increase PSU size or change to a linear unregulated power supply.</td>
</tr>
<tr>
<td>Red PWR SERVO light illuminated.</td>
<td>Critical fault.</td>
<td>To discover the source of the fault, use the Motor View tool located on the SMI software Tools menu.</td>
</tr>
</tbody>
</table>

Common Faults
<table>
<thead>
<tr>
<th>Issue</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus voltage fault.</td>
<td>Bus voltage is either too high or too low for operation.</td>
<td>Check servo bus voltage. If motor uses the DE power option, ensure that both drive and control power are connected.</td>
</tr>
<tr>
<td>Overcurrent occurred.</td>
<td>Motor intermittently drew more than its rated level of current.</td>
<td>Consider making motion less abrupt with softer tuning parameters or acceleration profiles.</td>
</tr>
<tr>
<td>Excessive temperature fault.</td>
<td>Motor has exceeded temperature limit of 85°C. Motor will remain unresponsive until it cools down below 80°C.</td>
<td>Motor may be undersized or ambient temperature is too high. Consider adding heat sinks or forced air cooling to the system.</td>
</tr>
<tr>
<td>Excessive position error.</td>
<td>The motor's commanded position and actual position differ by more than the user-supplied error limit.</td>
<td>Increase error limit, decrease load or make movement less aggressive.</td>
</tr>
<tr>
<td>Historical positive/negative hardware limit faults.</td>
<td>A limit switch was tripped in the past.</td>
<td>Clear errors with the ZS command.</td>
</tr>
<tr>
<td></td>
<td>Motor does not have limit switches attached.</td>
<td>Configure the motor to be used without limit switches by setting their inputs as general use.</td>
</tr>
</tbody>
</table>

Programming and SMI Issues

| Several commands not recognized during compiling. | Compiler default firmware version set incorrectly. | Use the Compiler default firmware version option in the SMI software Compile menu to select a default firmware version closest to the motor's firmware version. In the SMI software, view the motor's firmware version by right-clicking the motor and selecting Properties. |
TAKE A CLOSER LOOK

Moog solutions for a wide variety of applications, including medical, office automation, packaging, industrial, aerospace and defense are only a click away. Visit our worldwide web site for more information.

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA94043
United States
Tel: +1 650-960-4215
www.animatics.com

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
United States
Tel: +1 828-837-5115
www.animatics.com

Europe
Moog Memmingen GmbH
Allgäueustr. 8a
87766 Memmingen
Germany
Tel: +49 (0) 8331 98 480-0
www.animatics.de

Asia
Moog Animatics
Kichijoji Nagatan City Plaza 4F
1-20-1, Kichijo-jihoncho
Musashino-Shi, Tokyo 180-0004
Japan
Tel: +81 (0) 422 201251
www.animatics.jp

For product information, visit www.animatics.com
For more information or the office nearest you, contact us online, animatics_sales@moog.com

Moog is a registered trademark of Moog Inc. and its subsidiaries.
All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries.
©2015-2020 Moog Inc. All rights reserved. All changes are reserved.