
 Install the SMI Software

SMI_3_x.msi

 Establish Communication

To establish communication between the PC and SmartMotor, use
the Find Motors button.

 SMI Tools SMI Standard Control Interface

Menu bar
Toolbar

Con�guration
window

Terminal
window

Information
window

Program
editor

Download SMI from
animatics.com/smi, then follow the on-screen

instructions to complete the installation.

 If communication is successful,
the motor icon appears, indicating

the hardware connections and
software installation are correct.

SMI* Introduction

Double-click the
motor icon. The Motor View shows
key information, including position,

firmware version and model.

Menu bar: All of the windows and functions of the SMI software
can be accessed through the menu bar. Many of these are also
accessible through the icons on the toolbar.

Toolbar: Used for accessing the primary features of the SMI
software. Depending on the current state of the SMI software
and the currently active window, some toolbar buttons may be
disabled.

Configuration window: Displays all connections to PC, all
motors connected to PC, and status on all motors.

Terminal window: Used to directly access real-time command
and control of the motor.

Program editor: Used to manage, edit and print the user
program that will be sent to the motor.

Information window: Display the results of user operations.

*SMI: SmartMotor™ Interface

SMI Tools offer an array of
advanced functionality for
the application developer.
For instructions, refer to
SMI's online help or see the
SmartMotor Developer's
Guide.

7 Pin Combo D-Sub Connection
1 I/O – 6 GP, Index Input or “G” Command;

For -CDS7, CAN-L only
2 +5 VDC Out; For -CDS7, CAN-H only
3 RS-232 Transmit (Tx)
4 RS-232 Receive (Rx)
5 Common Ground (typ. SIG Ground)
A1 Main Power: +20-48 VDC
A2 Common Ground (req’d. POWER Ground)

9 PIN RS-232 Connection
2 RS-232 Receive (Rx)
3 RS-232 Transmit (Tx)
5 RS-232 Ground (Gnd)

 Single RS-232 Communication

SmartMotor Combo Connector PC RS-232 Connector

 11 10
 9

1 2
3 4 5

1 2 3 4
6 7 8 9

5A2A1

Power Ground

+20 to +48 VDC

Basic Wiring

NOTE: Do not reverse the positive and negative leads
from the power supply.
High-speed operation of the application requires 48
VDC input.

A

Simple Motion Control Program

Terminal Window - Sending Control Commands to the Motor

 Send Commands to the Motor

Limits are enabled by default. Class 5 motors
are designed to use normally closed (NC) limit
switches for safety.

The following commands can be entered in the Terminal window.
NOTE: Comments on white background are for information only
and cannot be typed.

Enter the following in the Program Editor window.

EIGN(W,0) 			 'Disable hardware limits
ZS 			 'Clear all current faults

MP			 'Set position mode
ADT=100			 'Set accel/decel target
VT=32768 			 'Set velocity target
PRT=4000			 'Set relative position target
G			 'Start motion

TWAIT	 		 'Wait for the previous action to complete, then continue
WAIT=1000	 	 	 'Set wait time (1sec=1000)
RPA
PT=40000			 'Set position target
VT=327680			 'Set velocity target
G

TWAIT			 'Wait for the previous action to complete, then continue
WAIT=1000
PRINT(“Current Position=“,PA,#13)	 'Show the actual position, then go to the next line
MV			 'Set velocity mode
G

WAIT=1000*4			 'Wait for 4 seconds
VT=VT/2
G

WAIT=1000*3			 'Wait for 3 seconds
VT=-VT
G

WAIT= 1000*3			 'Wait for 3 seconds
X			 'Decel to stop			
TWAIT			 'Wait for the previous action to complete, then continue
MT			 'Set torque mode
T=1601			 'Set torque
G

WAIT=1000*3			 'Wait for 3 seconds
T=1761			 'Set torque
G

WAIT=1000*3			 'Wait for 3 seconds
T=2242			 'Set torque
G

WAIT=1000*3			 'Wait for 3 seconds
T=1281			 'Set torque
WAIT=1000*3			 'Wait for 3 seconds
X			 'Decel to stop
END			 'Program end

 Download Program to the SmartMotor

Click 'Compile and Download
Program' then click 'Run' or 'Reset'
or power the motor off/on. The
motor will automatically run the
program.

Basic Operating Instructions

Type the
commands
only

EIGN(W,0) 	 'Clears the positive and
	 negative limits
ZS	 'Clears all current faults

Use the Terminal window to enter single commands.

MP
ADT=100
VT=32768
PRT=4000
G
RPA
O=0
PT=40000
VT=327680
G
RPA

MV
G
VT=VT/2
G	
VT=-VT	
G
X

MT
T=1600
G
T=-T
G
T=T*2
G
X

a=123
Ra
b=a+2
Rb
OFF
Z

Position Mode introduced
	 Set Position Mode (default power-up mode)
	 Set acceleration to 100 (1 rev / sec ^ 2 = 4, default is 0)
	 Set speed to 32768 (1 rps = 32768 = 60 rpm, default is 0)
	 Set the relative position of 4000 (1 rev = 4000, default is 0)
	 Start motion
	 Returns the absolute position of the motor
	 The current position set to 0
	 Set the absolute position of 40000 (10rev)
	 Set speed to 327680 (10rev/s)
	 Start motion
	 Returns the absolute position of the motor
Velocity Mode introduced
	 Set Velocity Mode
	 Start motion
	 Set half the rate of speed
	 Start motion	
	 Motor reverse	
	 Start motion
	 Motor decelerates to a stop
Torque Mode introduced
	 Set Torque Mode
	 Set the torque to ~5% (range +/- 32767)
	 Start motion
	 Motor reverse
	 Start motion
	 Double the commanded torque
	 Start motion
	 Motor decelerates to a stop
Variables introduced
	 Set the variable a value to 123
	 Returns the value of a variable
	 Set variable b value to the variable a plus 2
	 Returns the value of variable b
	 Turn off power to the motor coils and terminate motion
	 Total reset, equivalent to power off and then on

Type the
commands
only

EIGN(W,0)

ZS

Clears the positive and
negative limits
Clears all current faults

More programs are available at
animatics.com/sample-programs

C

Wiring diagram example

I/O Applications Introduced

 I/O Configuration Instructions

 I/O Configuration Example

 I/O Control Program Example

EIGN(W,0) 	 	 'Disable hardware limits
ZS 		 'Clear all current faults

OR (4)		 'Reset I/O port 4 output OFF (0V)

GOSUB (1)		 'Execute C1 'Move to sensor' subroutine

WHILE 1	 	 'Logic loop (to determine the value 1 for infinite loop)	
 IF IN (0)==0	 'Logic test to see if the condition is met, if so,
		 ' execute the code within
 VT=500000	
 ADT=100
 G
 WAIT=1000	 'Pause 1 second
 GOSUB (2)	 'Execute C2 'Toggle I/O port output' subroutine	

 VT=-VT/2	 'Reverse direction and run at 1/2 previous velocity
 ADT=100
 G
 WAIT=1000	 'Pause 1 second
 GOSUB (2)	 'Execute C2 'Toggle I/O port output' subroutine
	
 ENDIF	 	 'End of the IF structure

LOOP		 'End of the WHILE loop

END

'------------------------------ 'Move to sensor' subroutine ------------------------
C1		 'Motor will move in one direction until input 1 goes high
MV		 'Velocity Mode
ADT=100		 'Set accel and decel target
VT=32767		 'Set velocity target
OUT(3)=0		 'Set output 3 low to indicate motion
G		 'Start moving

WHILE IN(1)==0 	 'While input 1 is low, keep moving
LOOP

OUT(3)=1		 'Set output 3 high to indicate stop
X		 'Decelerate to a stop

WHILE IN(1)==1 	 'While input 1 is high, don't move
LOOP

OUT(3)=0		 'Set output 3 low to indicate motion
G		 'Start moving again

RETURN

'------------------------------ 'Toggle I/O port output' subroutine ------------------------------
C2
OS (4)		 'Set I/O port 4 output ON (5V)
WAIT=2000		 'Pause 2 seconds
OR (4)		 'Reset I/O port 4 output OFF (0V)
WAIT=2000		 'Pause 2 seconds
RETURN

1234567

9101112131415

8

13

(Use Pin 5,
 I/O 4 for Output)

(Use Pin 1,
I/O 0 for Input)

NPN Sensor
(Ex: OMRON EE-SX671)

(-)
Bl

ue

(O
ut

)B
la

ck

(+
)B

ro
w

n

1234567

9101112131415

8

I/O Control and Application

NOTES:
•	I/O 2 – Positive overtravel limit (for the CW direction of motor shaft)
•	I/O 3 – Negative overtravel limit (for the CCW direction of motor shaft)
•	I/O 6 – Enables motor movement (equivalent to the G command)
•	I/O ports input impedance = 5 kohm (5 kohm pull-up resistor)
•	GP I/O 0-6 are 25 mAmp Sink or Source, 10 Bit 0-5 VDC A/D

1 I/O – 0 GP or Enc A or Step Input
2 I/O – 1 GP or Enc B or Direction Input
3 I/O – 2 Positive Over Travel or GP
4 I/O – 3 Negative Over Travel or GP
5 I/O – 4 GP, IIC (SDA) or RS-485 A
 (Com ch. 1)
6 I/O – 5 GP, IIC (SCL) or RS-485 B
 (Com ch.1)
7 I/O – 6 GP, Index Input or “G” Command
8 Phase A Encoder Output

 9 Phase B Encoder Output
10 RS-232 Transmit;

For -CDS/7, CAN-L only
11 RS-232 Receive;

For -CDS/7, CAN-H only
12 +5 VDC Out
13 Common Ground (typ. SIG Ground)
14 Common Ground
15 Main Power: +20-48 VDC; if DE option,

Control Power separate from Main Power

15 PIN D-Sub I/O

The SmartMotor has seven pins (I/O 0 - 6)
to provide digital input (DI), digital output
(DO) and analog input (AI); the following is a
description of the SmartMotor 15-pin I/O:

D

For complete installation and programming details, see
the Class 5 SmartMotor™ Installation and Startup Guide
and the SmartMotor™ Developer's Guide.

B

http://animatics.com/smi
http://animatics.com/sample-programs

 Analog Input Application Example

Variable resistor: 1KΩ

Changes in Motor Position Using Analog Input

VT= 100000	 'Set speed
ADT=100	 'Set acceleration
WHILE 1	 'Loop (1 for infinite loop)
 b=INA(A,0)	'Declare I/O for the Analog 	
		 'input, and receive value into 	
		 'variable b
		 'A=0...32767

 PT=b	 'From variable b, set the 	
		 'position target value	
 G		 'Execute action
LOOP		 'Loop
END		 'Program end

 Motor to Follow the Movement and the
 Use of Electronic Gearing

Master Motor Slave Motor

Mode Follow with Ratio (Electronic Gearing)

'(Shows use of MF0, MFDIV and MFMUL)

EIGN(W,0) 	 'Make all onboard I/O general inputs;
		 'disable travel limits
ZS 		 'Clear all current faults
MF0 		 'Reset CTR(1)
MFDIV=-10 	 'Divisor = -10
MFMUL=21 	 'Multiplier = 21
MFR 		 'Calculate Ratio, input -10 external counts
		 'Resulting motion 21 counts
G 		 'Start following external encoder
END

1234567

9101112131415

8

1
2

3
4

5
6

7

9
10

11
12

13
14

158

1
2

3
4

5
6

7

9
10

11
12

13
14

158

Master Encoder outputs on pins 8 and 9, Slave receives
external Encoder signals on pins 1 and 2.

Set a connection as
Analog Input
b=INA(V1,0)
(The analog value
stored in variable b)
V1=0...5000mV

I/O Control and Application
D

Torque Control ModeBasic Logic Structures
IF, ELSEIF, ELSE, ENDIF structure:
 IF a<b
 PRINT ("a is less than b", #13)
 ELSEIF q==123
 PRINT ("q equals 123", #13)
 ELSE 		 'if no condition above was true
 PRINT ("nothing above was true", #13)
 ENDIF

WHILE, LOOP structure:
 a=0
 WHILE a<10
 a=a+1
 LOOP
 PRINT (“loop code executed 10 times”, #13)

GOTO, GOSUB structure:
 C1
 IF a>b
 	 GOTO1
 ELSEIF b>c
 	 GOSUB5
 ENDIF
 GOTO6
 C5
 PRINT (“b is greater than c“, #13)
 RETURN
 C6
 END

SWITCH, CASE, BREAK structure:
 SWITCH v
	 CASE 1
		 PRINT(" v = 1 ",#13)
	 BREAK
	 CASE 2
		 PRINT(" v = 2 ",#13)
	 BREAK
	 CASE 3
		 PRINT(" v = -23 ",#13)
	 BREAK
	 DEFAULT
		 PRINT(" v IS NOT 1, 2 OR -23",#13)
	 BREAK
 ENDS

Watchdog for Serial Communication Based off
Interrupts and TMR Command

'Setup portion of code
'Set up watchdog timer: Interrupt 0, Word 4, Bit 0, trigger low, subroutine 88
ITR(0,4,0,0,88)

'Start the timer 0 for 1 second
TMR(0,1000)

'Turn on the interrupt
EITR(0)
ITRE
'===
'Main program loop
WHILE 1	 'Forever
 '[Stuff happens here]
LOOP
END	 'End of program
'===
'Interrupt subroutine
C88
	 DITR(0)
	 S	 'Stops motors abruptly
	 WHILE ABS(VA)>0 LOOP	 'While velocity is not 0
	 WAIT=100	 'Just to make sure the system is settled

	 WHILE 1	 'To keep the program in this error mode
	 OFF	 'Freewheel
	 LOOP
RETURNI

MT		 'Enter Torque Mode
T=16000		 'Set torque value
G		 'Go
WAIT=500		 'Give the motor time to start moving

WHILE VA > 5000 	 'While moving faster than 1 RPM
LOOP

MP		 'Enter Position Mode
ADT=100		 'Set Accel/Decel Value
VT=3200		 'Set Velocity
PT=-400		 'Set target position
G		 'Go

TWAIT		 'Wait for move to complete
PRINT("Move complete",#13)

END

Application of the Basic Program Flow

More programs are available at
animatics.com/sample-programs

E

Terminal Window - Sending Commands to Multiple Axes
0EIGN(W,0)	
0ZS
0MP
0ADT=500
0VT=32768
0PRT=4000
0G
1RPA
2RPA
0O=0
1MV
1VT=300000
1ADT=25
1G
1X
1VT=-100000
1G
1X
2MT
2T=1600
2G
2X
2T=-1280
2G
2X

Multi-Axis Control Instructions

Type the following commands in the Terminal window.
NOTE: Comments on white background are for information
only and cannot be typed.

All motors, set local I/O in word 1 as gen-use, disable travel limits
All motors, clear all current faults
All motors, set to position mode
All motors, set accel/decel to 500 (4 = 1 rev / sec ^ 2)
All motors, set velocity target 32768 (32768 = 1rps = 60 rpm)
All motors, set position relative target 4000 (4000 = 1rev)
All motors, start motion
Motor 1, report the position
Motor 2, report the position
All motors, set current position to 0
Motor 1, set to velocity mode
Motor 1, set velocity target 300000
Motor 1, set accel/decel to 25
Motor 1, start motion
Motor 1, slow motion to stop
Motor 1, set velocity target -100000
Motor 1, start motion
Motor 1, slow motion to stop
Motor 2, set to torque mode
Motor 2, set torque 1600
Motor 2, start motion
Motor 2, slow motion to stop
Motor 2, set velocity target -1280
Motor 2, start motion
Motor 2, slow motion to stop

G

r

s

MA 1021-0119

www.animatics.com Tech Support +1 888-356-0357

NO TOOLS: Never use tools to tighten M-style connectors – they must be finger tightened only!
Use of a tool can cause overtightening of the connection, resulting in a damaged connector
and/or internal circuit board, an inoperable motor and a voided warranty.

6.

r

s

MA 1021-0119

www.animatics.com Tech Support +1 888-356-0357

NO TOOLS: Never use tools to tighten M-style connectors – they must be finger tightened only!
Use of a tool can cause overtightening of the connection, resulting in a damaged connector
and/or internal circuit board, an inoperable motor and a voided warranty.

6.

 RS-232 Series

9 Pin RS-232
2 RS-232 Receive (Rx)
3 RS-232 Transmit (Tx)
5 RS-232 Ground (Gnd)

7 Pin Combo D-Sub
A1 +20 to +48 VDC
A2 Power Ground
1 I/O 6; For -CDS7, CAN-L only
2 +5V Out; For -CDS7, CAN-H only
3 RS-232 Transmit (Tx)
4 RS-232 Receive (Rx)
5 RS-232 Ground (Gnd)

 RS-485 Connection

RS232485T Adapter
1 +5 VDC
2 GND
3 RS-485A
4 RS-485B

15 Pin D-Sub
12 +5 VDC out
13 Ground
5 I/O 4
6 I/O 5

 Addressing

 Auto-Addressing

 Pre-Addressing

Enter the following commands into the motor's user program to have the
SmartMotor self address:

NOTE: For RS-232 multi-axis, all of the motor responses must be open
(ECHO). For RS-485 multi-axis, all of the motor responses must be
closed (ECHO_OFF).

TxD

TxD

RxD

RxD

GND

GND TxDRxD GND TxDRxD GND

Computer with RS-232 Port
 Motor 1 Motor 2 Motor n

TxD
RxD
GND

GND

GND

Computer with RS-232 Port

RS232485T Adapter
(RS-232 to RS-485 converter)

RS-485RS-232

 Motor 1 Motor 2 Motor n

B

B

+5

+5

A

A GNDB+5 A GNDB+5 A

12
0

Ω

TxD

TxD

RxD

RxD

GND

GND TxDRxD GND TxDRxD GND

Computer with RS-232 Port
Motor 1 Motor 2 Motor 3

GND

GND
RxD

RxDTxD TxD GNDRxD TxD GNDRxD TxD

SADDR2
Computer with RS-232 Port

HMI with RS-232 Port

SADDR1 SADDR3
Motor 2 Motor 1 Motor 3

On the Toolbar, click (Find
Motors) or Find Motors in the
Configuration window.

SADDRn 'Pre-motor address, where n = 1,2,3 ...
ECHO	 'Open response (see NOTE below)
END

Objective: To be able to communicate instructions to the specified motor,
each motor must first have a unique address within the whole system.
Methods: SmartMotor provides two ways to define the motor address:
1. Automatic Addressing (Auto-Addressing): after each reboot, the system

automatically sets the motor's address based on its order in the serial
chain.

2. Pre-Addressing: The motor's address is stored within each motor's user
program.

When completed, the system
displays the detected motors,
their assigned addresses and
firmware versions as shown.

The computer determines the
order based on the motor's
position in the serial chain —
the closest to the computer is
motor 1, followed by motor 2,
etc. NOTE: If some are pre-
addressed, you can re-address
all motors, which may change
the existing motor addresses.

Multi-Axis Control Wiring and Addressing

Restart the power supply (Reset). After the motors have powered on,
click (Detect Motors). SMI finds the pre-addressed motors and
displays them in the Configuration window.

NOTE: If some motors are addressed and some are not, then you can
choose to re-address all motors. This will probably change the address
of any previously addressed motor.

*		RS-485A connected to I/O 4, RS-485B connected to I/O 5.
*		Adapters provided by Moog Animatics have built-in biasing resistors. 		
	However, extensive networks should add bias at the very last motor in 		
	the chain.

* 	Proper cabling would include a shielded twisted pair to minimize 		
	transmission interference.

* 	RS232485T adapter’s +5 VDC power requirement should be provided 		
	by an external (non-motor) power supply.

F

Specification and information are subject to change without prior notice. Refer to the website, www.animatics.com, for
the latest information. Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic
and the Combitronic logo, and SMI are all trademarks of Moog Inc., Animatics. Other trademarks are the property of
their respective owners.

© 2018 Moog Animatics MA1023-0519

RRANDOM Report the next available
random number in the range 0 to
2^31 -1

SIN(value) Sine
SQRT(value) Square Root
TAN(value) Tangent
TMR(x,t) Sets timer x for t milliseconds

MOTION COMMANDS:
ADT=expression Set the accel/decel at

once for a move
Ai(0) Arm index rising edge of internal

encoder
Ai(1) Arm index rising edge of external

encoder
AMPS=expression Current limit value.

0-1023
BREAK Break out of while loop
BRKENG Manually Engage the brake
BRKRLS Manually Release the brake
BRKSRV Brake Servo, engage the

brake when the drive is not active
(default)

BRKTRJ Brake Trajectory
CTR(0) Present value of internal

encoder
CTR(1) Present value of external

encoder
DEL=expression Set maximum allow-

able derivative error limit
DT=expression Set the deceleration

target for a move
EL=expression Set maximum allowable

following error limit
ENC0 Enable internal encoder for servo
ENC1 Enable external encoder for servo
F Set tuning values
G Go, initiates all buffered modes of

operation
G(gen#) Go, initiate motion in trajectory

generator (gen#)
KA=expression Feed forward gain
KD=expression Derivative gain

coefficient
KG=expression Gravity offset
KI=expression PID integral gain
KL=expression PID integral limit
KP=expression PID proportional gain
KS=expression Differential sample rate
KV=expression Velocity feed forward

gain
MC Initiate electronic camming
MC(2) Set Trajectory Generator 2 to run

in electronic camming
MDB Enable Trajectory Overshoot

Brake (TOB) when in one of the 2
trapezoidal modes

MDE Set motor to enhanced trapezoidal
mode commutation by using encoder

MDS Set motor to sine mode commu-
tation

MDT Set motor to trapezoidal mode
commutation using hall sensors
(default mode)

MFA(value) Accel over value master

REFERENCE KEY:
- is the I/O Bit Number
m - is the mask value of which bits are

affected
W - defines it as a word (16 bits)
expression - an expression must con-

tain no more than a total maximum of
32 operators, values, and parenthesis.

value - a number, variable or math
expression with one operand

constant - means a fixed integer
gen# Trajectory generator number:

1 or 2
i - Interrupt number, valid values are

from 0 to 7

COMMUNICATION COMMANDS:
CCHN(RS2,0) Close communication

channel command
GETCHR Get the next character from

channel 0
OCHN(RS2,0,N,9600,1,8,C,1000)

Default: (RS-232,chan=0, no parity,
9600 baud,1 stop bit, 8 data bits,
command,1000 ms timeout)

PRINT(“Hello World”,#13) Print com-
mand to say “Hello World”, see print
section for more detailed examples

PROGRAM FLOW COMMANDS:
CASE expression Switch case

statement
C constant Subroutine label, e.g.,

C10 for subroutine 10, must have a
RETURN for each C label

DEFAULT Default action for switch case
statement

DITR(i) Individual interrupt disable
EITR(i) Individual interrupt enable
ELSEIF expression Used for IF

statements to test another condition, if
expression is true, then execute code

END End program execution
ENDIF End statement for IF code

structures
ENDS Command for end of switch case

statement
GOSUB(value) Call a subroutine, value

up to 999
GOTO(value) Jump program execution

to a label, value up to 999
IF expression Conditional Test, expres-

sion can be multiple math operations
ITR(i, status_wrd#, bit#, s, label#)

Interrupt setup
ITRD Global interrupt scanner disable
ITRE Global interrupt scanner enable
LOOP Loop command for while loops
PAUSE Pause program execution, used

for interrupts
RETURN Return from subroutine
RETURNI Return from interrupt
RUN Start program execution
RUN? Wait at this point for RUN com-

mand before program starts to execute

SWITCH expression Switch case
statement

TWAIT Wait for trajectory to complete,
only used in program

TWAIT(gen#) Wait for trajectory genera-
tor (gen#) to complete its move

WAIT=expression Set wait time in
milliseconds

WHILE expression

I/O COMMANDS:
EIGN(#) Assign a single I/O point as

general use input
EILN Set port C (I/O-2) as negative over

travel limit
EILP Set port D (I/O-3) as positive over

travel limit
EIRE Set I/O 6 to capture external

encoder’s current value
EIRI Set I/O 6 to capture internal encod-

er’s current value
EOBK(#) Configure a given output to

control an external brake
IN(#) x=IN(#), assign the state of a spe-

cific I/O to a variable (x in this case)
INA(A,#) x=INA(A,#), raw analog read-

ing: 10 bit resolution spanned over
signed 16 bit range

INA(V1,#) x=INA(V1,#), scaled 0-5
VDC reading in millivolts directly, 3456
would be 3.456 VDC

OR(value) Reset output (turn off)
OS(value) Set output (turn on)
OUT(#)=expression if expression LSB

= 1, then it’s true (1); otherwise, it’s
false (0)

MATH COMMANDS:
- Subtract
!| Bitwise exclusive OR
!= Not equal to
% Modulo (remainder) division
& Bitwise AND
* Multiply
/ Divide
^ Power limited to 4th power and below,

integers only
| Bitwise inclusive OR
+ Add
< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
ABS(value) Absolute Value
ACOS(value) Arc Cosine
ASIN(value) Arc Sine
ATAN(value) Arc Tangent
COS(value) Cosine
FABS(value) Floating point absolute

value
FSQRT(value) Floating point square

root
RANDOM=expression Set the random

seed value 0 to 2^31 - 1

distance. Default is zero (off)
MFD(value) Decel over value master

distance. Default is zero (off)
MFDIV=expression Assign Incoming

counts Divisor
MFMUL=expression Assign Incoming

counts Multiplier
MF0 Initiate and zero counter, but do

not follow
MFR Select follow mode using quadra-

ture encoder input.
MFSLEW(value) Stay at slew for value

distance, then decel
MINV(0) Default motor commutation

direction
MINV(1) Invert commutation, shaft

rotates opposite direction
MP Initiate Position Mode
MSR Calculate Mode Step Ratio and

prepare to follow
MT Initiate Torque Mode (Open Loop)
MTB Enable mode torque brake
MV Initiate Velocity Mode
O=expression Set origin, set present

position to some value
OFF Turn the amplifier off
OSH=expression Origin shift of position

counter on the fly
PML=expression Sets the position

modulo limit wrap value
PMT=expression Set the position

modulo target
PRT=expression Set the relative target

position
PT=expression Set the absolute target

position
S Instantly stop motor
S(gen#) Instantly stop trajectory gener-

ator (gen#)
T=expression Set the commanded

torque while in MT mode
TH=expression Set maximum allowable

thermal limit (degrees C)
VT=expression Set the velocity target

for a move
X Decelerate to a stop at present decel-

eration rate

MULTI-AXIS COMMANDS:
(All associated motors must be on same
Combitronic™ CANbus network)
ADT=expression Set the accel/decel at

once for a move
ADTS=expression Set sync accel/decel

at once for a move
ATS=expression Set sync acceleration

target for a move
DTS=expression Set sync deceleration

for a move
GS Go synchronized, initiates linear

interpolated moves
PRTS=(dist1;axis1,dist2;ax-

is2,dist3;axis3) Set synchronized
relative target position 	

PRTSS=(dis1;axis) Set supplemental

synchronized relative target position
PTS=(dist1;axis1,dist2;axis2,dist3;ax-

is3) Set synchronized absolute target
position	

PTSD Stores the synchronized target
move linear distance

PTSS=(dis1;axis) Set supplemental
synchronized absolute target position

PTST Stores the time for synchronized
move to target position

TSWAIT Wait for synchronized trajectory
to complete

VTS=expression Set synchronized
velocity target for a move

STATUS COMMANDS:
Ba Over current bit, status word 0, bit 4

status word 1, bit 3
Be Excessive position error, status word

0, bit 6
Bh Excessive temperature occurred,

status word 0, bit 5
Bl Left (-) over travel limit, status word

0, bit 13
Bm Left (-) over travel limit active, status

word 0, bit 15
Bo Motor is off, status word 0, bit 1
Bp Right (+) over travel limit active,

status word 0, bit 14
Br Right (+) over travel limit, status word

0, bit 12
Bt Trajectory in progress, status word

0, bit 2
Bv Velocity limit, status word 0, bit 7
CLK=expression System Clock value

in milliseconds
RAC Report commanded acceleration
RAT Report target acceleration
RB(sw,b) Report status bit, b, from

status word, sw
RCKS Report Checksum
RCLK Report system clock in milli-

seconds
RCTR(0) Report present value of

internal encoder
RCTR(1) Report present value of

external encoder
RDEA Report actual derivative error
RDEL Report commanded derivative

error limit
RDT Report target deceleration
REA Report actual following error
REL Report commanded following

error limit
RI(0) Report where the rising edge of

the internal index was detected
RIN(#) Report the state of a I/O
RIN(W,0) Report the first word of local

I/O
RINA(V1,#) Reports voltage level

(scaled 0-5 VDC) of analog input value
for a given I/O defined by #

RJ(0) Report where the falling edge of
the internal index was detected

RJ(1) Report where the falling edge of

the external index was detected
RPA Report present actual position
RPC Report present commanded

position
RPC(gen#) Report commanded position

for trajectory generator (gen#)
RPMA Report the current modulo

counter
RPML Report position modulo limit
RPMT Report the most recent setting of

PMT (position modulo target)
RPRA Report actual relative position
RPRC Report commanded relative

position
RPRT Report present relative target

position
RPT Report present target position
RRES Report encoder resolution of

motor
RSP Report sampling rate and firmware

version
RT Report commanded torque
RTMR(x) Report timer x (present time

left in milliseconds)
RUIA Reports current (Amps=UIA/1000)
RUJA Reports bus voltage (Volts=U-

JA/1000)
RVC Report commanded velocity
RVT Report target velocity
RW(value) Report status word
Z(sw,b) Clears/zeros status word bits
Za Reset over current bit
Ze Reset position error bit
Zh Reset over temperature bit
Zl Reset left(-) historical limit bit
Zr Reset right(+) historical limit bit
ZS Clear all errors, reset system latches

to power up state
Zw Reset wraparound bit

VARIABLE COMMANDS:
a=expression Variable, 32 bit signed

integers, a-z, aa-zz, aaa-zzz, 78 total
variables

ab[x]=expression Array variables, 8 bit
byte arrays, x can be 0-203

af[x]=expression Floating point array
variables, x can be 0-7

al[x]=expression Array variables, 32 bit
long arrays, x can be 0-50

aw[x]=expression Array variables, 16
bit word arrays, x can be 0-101

EPTR=expression EEPROM pointer,
non-volatile memory, use before VLD
and VST commands

VLD(variable,quantity) Load values
from EEPROM to variables starting at
EPTR location

VST(variable,quantity) Store values
to EEPROM from variables starting at
EPTR location

NOTE: See the SmartMotor Developer's
Guide for a complete list of commands,
full syntax and code examples.

 Quick Reference for Frequently Used Commands

Common SmartMotor Commands
* TM RED TEXT commands optionally support Combitronic™ syntax, which requires "-C, -DE, -CDS,

-CDS7" or "CANopen or DeviceNet" product option.

H

www.animatics.com

http://animatics.com/sample-programs

