
www.animatics.com

DESCRIBES THE CLASS 5 AND 6 
SMARTMOTOR™ SUPPORT FOR THE 
MODBUS® RTU PROTOCOL

CLASS 5 AND 6 SMARTMOTOR™ 
TECHNOLOGY

MODBUS® RTU IMPLEMENTATION FOR

FULLY INTEGRATED 
SERVO MOTORS

Rev. E, September 2022



Copyright Notice
©2014-2022, Moog Inc.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E, PN: SC80100014-001.

This manual, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. The content of this manual is furnished for
informational use only, is subject to change without notice and should not be construed as a
commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no responsibility or liability for any
errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise,
without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is the user's
responsibility to decide if a particular code sample or program applies to the application being
developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and
the Combitronic logo are all trademarks of Moog Inc., Animatics. Modbus is a registered trademark of
Modbus Organization, Inc. Other trademarks are the property of their respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it for
future readers. Such notifications should contain the words "Modbus RTU Guide" in the subject line and
be sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
USA

Tel: 1 650-960-4215

Support: 1 (888) 356-0357

Website: www.animatics.com

Email: animatics_sales@moog.com



Table Of Contents

Introduction 6
Purpose 7

New Feature Highlights 8

Safety Information 10

Safety Symbols 10

Other Safety Considerations 10

Motor Sizing 10

Environmental Considerations 10

Machine Safety 11

Documentation and Training 11

Additional Equipment and Considerations 12

Safety Information Resources 12

Additional Documents 13

Related Guides 13

Other Documents 13

Additional Resources 14

Modbus Resources 14

System Connections 15
Cable Diagram 16

Maximum Cable Length 16

Using Modbus 17
Modbus RTU Description 18

OCHN Command 18

M-style Motor Example 18

D-style Motor Example 18

Legacy Modbus RTU Discussion 18

Supported Function Codes 19

16-Bit Access 19

32-Bit Access 19

Text Access (encapsulated command) 19

Input Registers - 3X 20

3X Mapping 20

Holding Registers - 4X 21

4X Mapping 21

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 3 of 57



Modbus RTU Communications Example 22

Modbus RTU Communication Setup 22

Modbus RTU Sample Command Sequences 23

Read input registers (status word 3) 23

Write variable "a" (a=100000) 24

Read variable "a" (value returned is 100000) 25

Call GOSUB(1) (Success) 25

New Feature Details 27
Read Packet Data from Modbus 29

Example Read Using QModBus Program 29

Limitations of Read Packet Mapping 30

Configuration Details 30

Even Word 30

Odd Word 30

Read Mapping Info 30

Example: Mapping Info Bits Detail 31

Read Packet Configuration Registers 31

Example: Read Mapping Setup 32

Example: Data Request and Response (Byte-by-Byte) 32

Resulting Data Packet 32

Modbus Single Command Write 34

Mapped Write Operation 34

Handling of Enable Bits 12 and 13 for Write Process 35

Example 35

GOSUB R2 through Modbus 37

GOSUB R2 Procedure 38

Example: GOSUB R2 38

Special status word (16-bits) 40

Example: Mapping Setup 40

Register Bitwise Description 40

SmartMotor Modbus Register Space 41

Input Registers 41

Output Registers 41

Report Command Codes 43

Write Command Codes 44

Read Mapping Setup 45

PLC Simulator 45

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 4 of 57



Example: Host to Call "VT=100000 G" 47

PLC Programming Steps 47

Explicit Command Example 49

Write Packet and Response 51

Output Data 51

Command: Device address 51

Command: Modbus function code 51

Command: Starting register address 52

Command: Number of registers 52

Command: Byte Count 52

Command: Data word at 512 52

Command: Data word at 513 52

Command: Data word at 514 52

Command: Data word at 515 52

Command: CRC 52

Input Data 53

Response: From this device address 53

Response: Modbus function code 53

Response: Starting address 53

Response: Number of registers 53

Response: CRC 53

Write Packet and Response - Invalid Start Address 54

Input Data 54

Response: From this device address 54

Response: Modbus function code + 0x80 54

Response: Error code is number 2 54

Response: CRC 54

Troubleshooting 55

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 5 of 57



Introduction

Introduction
This chapter provides information on the purpose and scope of this manual. It also provides information
on safety notation, related documents and additional resources.

Purpose 7

New Feature Highlights 8

Safety Information 10

Safety Symbols 10

Other Safety Considerations 10

Motor Sizing 10

Environmental Considerations 10

Machine Safety 11

Documentation and Training 11

Additional Equipment and Considerations 12

Safety Information Resources 12

Additional Documents 13

Related Guides 13

Other Documents 13

Additional Resources 14

Modbus Resources 14

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 6 of 57



Purpose

Purpose
This Modbus® guide describes the Modbus RTU protocol support provided by the Moog Animatics Class
5 and 6 SmartMotor™. It describes the major concepts that must be understood to integrate a
SmartMotor follower with a PLC or other Modbus RTU (Remote Terminal Unit) controller. However, it
does not cover all the low-level details of the Modbus RTU protocol.

NOTE: The feature set described in this version of the manual refers to motor firmware 5.x.4.31
(Class 5 D/M) or higher, and 6.0.2.41 (Class 6 M) / 6.4.2.50 (Class 6 D) or higher.

This manual is intended for programmers or system developers who have read and understand the
Modbus Serial Line Protocol and Implementation Guide V1.02, which is published and maintained by
Modbus.org. Therefore, this manual is not a tutorial on that specification or the Modbus RTU protocol.
Instead, it should be used to understand the specific implementation details for the Moog Animatics
SmartMotor. For a general overview of Modbus RTU, see the FAQ page and other resources at
www.modbus.org.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 7 of 57

http://www.modbus.org/


New Feature Highlights

New Feature Highlights
This section highlights several new features have been added for Class 5 firmware versions 5.0.4.53
and later for D-style motors, and 5.98.4.53 and later for M-style motors. For more details on these and
other new features, see New Feature Details on page 27.

NOTE: These features are not currently implemented in the Class 6 motors.
l Command Code Mappings

l Read multiple values, packed data (see Read Packet Data from Modbus on page 29).
l Gives priority to reading many values with minimal overhead.

l Friendly to PLC environments that have a constant range of registers read during
operation.

l Write single value (see Modbus Single Command Write on page 34).
l Option to call G after value is written to support the common use-case of

"VT=1234 G".
l Optional cyclic edge-triggered protection/feedback to support PLC programming

environments, which may not have explicit control of message transmission cycles.
Or, if desired, every Modbus write to the motor will execute the commanded action.

l Friendly to PLC environments that have a constant range of registers read during
operation.

l GOSUB R2 (see GOSUB R2 through Modbus on page 37).
l Same implementation used in CANopen object 0x2309.

l For behavior similar to a function call, a quantity of user registers can optionally be
written in the same “write multiple registers” Modbus operation as the GOSUB R2. When
the subroutine runs, it can access these newly-written values as input arguments.

l Special option to allow cyclic calling of GOSUB with or without edge-sensitive behavior
(cycling between -1 and the intended subroutine number as the written data value).

l This particular GOSUB interface always prevents re-entry until the subroutine completes
with a RETURN. This protects from stack overflow due to repeated calling of the GOSUB.
However, it doesn’t prevent self-induced stack overflow within the program if program is
poorly written to GOSUB to itself.

l A status flag is available to indicate when the subroutine has completed.

l Writing to this location when still busy will return an error through Modbus.

l Friendly to PLC environments that have a constant range of registers read during
operation.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 8 of 57



New Feature Highlights

l Parity Checking
l Parity and framing errors reported by the UART are used to reject a Modbus packet if any

received character shows such an error. If parity mode is not selected when the channel is
opened (OCHN), then only the framing error information will be used. CRC checking is still
used (implemented previously).

l Except for Modbus, parity and framing checking do not apply to other modes of serial port
operation, and will only indicate a user flag when these occur.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 9 of 57



Safety Information

Safety Information
This section describes the safety symbols and other safety information.

Safety Symbols
The manual may use one or more of these safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard, where
failure to comply with the instructions could result in serious injury to the operator
or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to
comply with the instructions could result in slight injury to the operator or minor
damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations
The Moog Animatics SmartMotors are supplied as components that are intended for use in an
automated machine or system. As such, it is beyond the scope of this manual to attempt to cover all
the safety standards and considerations that are part of the overall machine/system design and
manufacturing safety. Therefore, this information is intended to be used only as a general guideline for
the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk Assessment" and to
ensure that the machine/system and its safeguards comply with the safety standards specified by the
governing authority (for example, ISO, OSHA, UL, etc.) for the site where the machine is being installed
and operated. For more details, see Machine Safety on page 11.

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are properly sized
for the specific application. Undersized motors may: perform poorly, cause excessive downtime or
cause unsafe operating conditions by not being able to handle the loads placed on them. The System
Best Practices document, which is available on the Moog Animatics website, contains information and
equations that can be used for selecting the appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the approved and
validated system. Specification changes or firmware upgrades require the approval of the system
designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating environment
for dust, high-humidity or presence of water (for example, a food-processing environment that requires
water or steam wash down of equipment), corrosives or chemicals that may come in contact with the
machine, etc. Moog Animatics manufactures specialized IP-rated motors for operating in extreme
conditions. For details, see the Moog Animatics Product Catalog.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 10 of 57



Machine Safety

Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the machine/system
builder must perform a "Risk Assessment", which is often based on the ISO 13849 standard. The
design/implementation of barriers, emergency stop (E-stop) mechanisms and other safeguards will be
driven by the Risk Assessment and the safety standards specified by the governing authority (for
example, ISO, OSHA, UL, etc.) for the site where the machine is being installed and operated. The
methodology and details of such an assessment are beyond the scope of this manual. However, there
are various sources of Risk Assessment information available in print and on the internet.

NOTE: The next list is an example of items that would be evaluated when performing the Risk
Assessment. Additional items may be required. The safeguards must ensure the safety of all
personnel who may come in contact with or be in the vicinity of the machine.

In general, the machine/system safeguards must:
l Provide a barrier to prevent unauthorized entry or access to the machine or system. The barrier

must be designed so that personnel cannot reach into any identified danger zones.
l Position the control panel so that it is outside the barrier area but located for an unrestricted

view of the moving mechanism. The control panel must include an E-stop mechanism. Buttons
that start the machine must be protected from accidental activation.

l Provide E-stop mechanisms located at the control panel and at other points around the
perimeter of the barrier that will stop all machine movement when tripped.

l Provide appropriate sensors and interlocks on gates or other points of entry into the protected
zone that will stop all machine movement when tripped.

l Ensure that if a portable control/programming device is supplied (for example, a hand-held
operator/programmer pendant), the device is equipped with an E-stop mechanism.

NOTE: A portable operation/programming device requires many additional system design
considerations and safeguards beyond those listed in this section. For details, see the safety
standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the site
where the machine is being installed and operated.

l Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys, tooling, etc.).

l Prevent contact with a part that is thrown from the machine tooling or other part-handling
equipment.

l Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other hazards that
may be present at the machine.

l Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

l Provide a proper control system, program logic and error checking to ensure the safety of all
personnel and equipment (for example, to prevent a run-away condition). The control system
must be designed so that it does not automatically restart the machine/system after a power
failure.

l Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety, operation,
maintenance and programming, along with training for all machine operators, maintenance technicians,
programmers, and other personnel who may have access to the machine. This documentation must
include proper lockout/tagout procedures for maintenance and programming operations.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 11 of 57



Additional Equipment and Considerations

It is the responsibility of the operating company to ensure that:
l All operators, maintenance technicians, programmers and other personnel are tested and

qualified before acquiring access to the machine or system.
l The above personnel perform their assigned functions in a responsible and safe manner to

comply with the procedures in the supplied documentation and the company safety practices.
l The equipment is maintained as described in the documentation and training supplied by the

machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the need for
additional equipment. In general, it is the responsibility of the operating company to ensure that:

l Unauthorized access to the machine is prevented at all times.

l The personnel are supplied with the proper equipment for the environment and their job
functions, which may include: safety glasses, hearing protection, safety footwear, smocks or
aprons, gloves, hard hats and other protective gear.

l The work area is equipped with proper safety equipment such as first aid equipment, fire
suppression equipment, emergency eye wash and full-body wash stations, etc.

l There are no modifications made to the machine or system without proper engineering
evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources
Additional SmartMotor safety information can be found on the Moog Animatics website; open the topic
"Controls - Notes and Cautions" located at:

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html

OSHA standards information can be found at:

https://www.osha.gov/law-regs.html

ANSI-RIA robotic safety information can be found at:

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

UL standards information can be found at:

http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:

http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 12 of 57

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html
https://www.osha.gov/law-regs.html
http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23
http://ulstandards.ul.com/standards-catalog/
http://www.iso.org/iso/home/standards.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm


Additional Documents

Additional Documents
The Moog Animatics website contains additional documents that are related to the information in this
manual. Please refer to these lists.

Related Guides
l Moog Animatics SmartMotor™ Installation and Startup Guides

http://www.animatics.com/install-guides

l SmartMotor™ Developer's Guide

http://www.animatics.com/smartmotor-developers-guide

l SmartMotor™ Homing Procedures and Methods Application Note

http://www.animatics.com/homing-application-note

l SmartMotor™ System Best Practices Application Note

http://www.animatics.com/system-best-practices-application-note

In addition to the documents listed above, guides for fieldbus protocols and more can be found on the
website: https://www.animatics.com/support/downloads.manuals.html

Other Documents
l SmartMotor™ Certifications

https://www.animatics.com/certifications.html

l SmartMotor Developer's Worksheet
(interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port Status,
Serial Port Status, RMODE Decoder and Syntax Error Codes)

https://www.animatics.com/support/downloads.knowledgebase.html

l Moog Animatics Product Catalog

http://www.animatics.com/support/moog-animatics-catalog.html

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 13 of 57

http://www.animatics.com/install-guides
http://www.animatics.com/smartmotor-developers-guide
http://www.animatics.com/homing-application-note
http://www.animatics.com/system-best-practices-application-note
https://www.animatics.com/support/downloads.manuals.html
https://www.animatics.com/certifications.html
https://www.animatics.com/support/downloads.knowledgebase.html
http://www.animatics.com/support/moog-animatics-catalog.html


Additional Resources

Additional Resources
The Moog Animatics website contains useful resources such as product information, documentation,
product support and more. Please refer to these addresses:

l General company information:

http://www.animatics.com

l Product information:

http://www.animatics.com/products.html

l Product support (Downloads, How-to Videos, Forums and more):

http://www.animatics.com/support.html

l Contact information, distributor locator tool, inquiries:

https://www.animatics.com/contact-us.html

l Applications (Application Notes and Case Studies):

http://www.animatics.com/applications.html

Modbus Resources
Modbus is a common standard maintained by Modbus.org:

l Modbus.org website:

http://www.modbus.org

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 14 of 57

http://www.animatics.com/
http://www.animatics.com/products.html
http://www.animatics.com/support.html
https://www.animatics.com/contact-us.html
http://www.animatics.com/applications.html
http://www.modbus.org/


System Connections

System Connections
These sections describe the system connections.

NOTE: For information on your motor's connector pinouts and status LEDs, refer to your motor's
SmartMotor Installation and Startup Guide. Also, note that if your Class 5 motor is equipped with
the CANopen option, LEDs 2 and 3 do not apply to Modbus RTU.

Cable Diagram 16

Maximum Cable Length 16

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 15 of 57



Cable Diagram

Cable Diagram
The next figure shows a Modbus RTU controller connected to a serial daisy chain of follower devices.
Although different network topologies are possible, the daisy chain provides the most reliable
performance. If drops are made from the main trunk line, they should be kept as short as possible.

NOTE: When calculating the overall (total) cable length, you must account for all cable segments in
the network.

RS-485 Serial Bus

Other follower device:
- I/O module,
- etc.

Modbus Controller*
- PC,
- PLC,
- etc.

*Controller may have termination option; see controller’s documentation for details.

120 Ohm
Terminator

120 Ohm
Terminator*

Serial
Port

SmartMotor 
Follower

SmartMotor 
Follower

Serial
Port

Serial
Port

Serial
Port

NOTE: RS-485 serial communications uses a voltage differential signal that requires proper
termination with a 120 ohm resistor at both ends of the network cable. This conforms with RS-485
standards for biasing to ensure reliable performance.

Maximum Cable Length
NOTE: When calculating the overall (total) cable length, you must account for all cable segments in
the network.

Moog Animatics recommends a maximum cable length of 1000 meters or a maximum baud rate of
115200. As baud rate increases, the maximum cable length decreases. The maximum cable length
allowed depends on the baud rate, gauge and other physical properties of the cable, operating
environment and other factors.

For more details, see the Modbus Serial Line Protocol and Implementation Guide V1.02.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 16 of 57



Using Modbus

Using Modbus
These sections describe how to enable Modbus communications with your SmartMotor, along with
information on supported function codes, input registers and holding registers.

Modbus RTU Description 18

OCHN Command 18

M-style Motor Example 18

D-style Motor Example 18

Legacy Modbus RTU Discussion 18

Supported Function Codes 19

16-Bit Access 19

32-Bit Access 19

Text Access (encapsulated command) 19

Input Registers - 3X 20

3X Mapping 20

Holding Registers - 4X 21

4X Mapping 21

Modbus RTU Communications Example 22

Modbus RTU Communication Setup 22

Modbus RTU Sample Command Sequences 23

Read input registers (status word 3) 23

Write variable "a" (a=100000) 24

Read variable "a" (value returned is 100000) 25

Call GOSUB(1) (Success) 25

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 17 of 57



Modbus RTU Description

Modbus RTU Description
Modbus RTU is a standard that allows industrial devices to communicate over serial connections. The
Moog Animatics Class 5 and 6 SmartMotors support communication to a PLC, HMI, or other host device
over serial RS-485 only.

NOTE: The Moog Animatics Class 6 SmartMotor also supports the Modbus TCP/IP protocol over
Ethernet TCP/IP connections. Refer to that guide for details.

OCHN Command
The OCHN command is used to open the serial port with Modbus RTU support. Refer to the next
examples. By default, SmartMotor serial ports are not open in this mode.

The Class 5 and 6 SmartMotors will act as a follower devices in such a network. User integer variables
have read/write access as word (16-bit), or long (32-bit values). Status words can be read as 16-bit
words. Also, subroutines may be called via GOSUB(value).

NOTE: In this guide, hexadecimal numbers are prefixed by 0x. Therefore 0x0001 is a hexadecimal
one in 16-bit representation, and 0x00000001 is a hexadecimal one in 32-bit representation.

M-style Motor Example
OCHN(MB4,0,N,115200,1,8,D) ' Modbus COM0 M-series circular connector.

NOTE: Because the M-style SmartMotor has only one serial port, it is mutually exclusive with
applications that need to interact with the SMI software over serial communications. If the above
code is used in an M-style motor, it may be necessary to use the SMI software Communication
Lockup Wizard to disable to program when SMI is needed to configure the motor.

D-style Motor Example
OCHN(MB4,1,N,115200,1,8,D) ' Modbus COM1 D-series 15-pin or

' HD26-pin D-sub connector.
SADDR1 ' Modbus uses this address to identify itself.

For more details on the OCHN command, see the SmartMotor™ Developer's Guide.

Legacy Modbus RTU Discussion
Memory/registers designated as being in the 4X space are referred to as read/write space. This is an
association consistent with legacy Modbus RTU.

Memory/registers designated as being in the 3X space are referred to as read-only space. This is an
association consistent with legacy Modbus RTU.

For Class 5 and 6 SmartMotor access to resources described in this document, note that 0-based
addressing is used. At the Modbus network level, this is the address that is transmitted. Some
controllers may ask the user to specify addresses that are not 0-based. The address in the 4X space of
40001 is actually 0000(hex) on the network. Further, because legacy space is small, a network address
of 8000(hex) is converted to a 4X reference as shown:

32768 + 40001 = 72769 (some Modbus RTU tools may do this)

Likewise, in the 3X space, the network address of 8000(hex) is converted to legacy format as shown:

32768 + 30001 = 62769

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 18 of 57



Supported Function Codes

Note that address offsets are actually separated by function codes in the 4X and 3X legacy reference
spaces. Therefore, what looks like an overlap in controller memory is not. The controller memory has
been separated to respect the convention of read/write memory and read-only memory, 4X and 3X,
respectively.

Some controllers may handle this differently. Therefore, it is the responsibility of the system
programmer to be aware of the method used in the host controller. The SmartMotor simply expects 0-
based addresses and is not aware of any translation that the host may conduct.

Supported Function Codes
A small set of Modbus function codes are supported for simple access to variables and status words.
The GOSUB feature of the AniBasic language can be accessed through register write as well.

16-Bit Access
This table shows the codes, descriptions and functions for 16-bit access.

Code Description Function
03 Read Holding Registers (4X space) Read 16-bit value or values.
04 Read Input Registers (3X space) Read 16-bit (read-only) value or values.
06 Write Single Register (4X space) Write 16-bit value or values.
16 Write Multiple Registers (4X space) Write 16-bit value or values.

32-Bit Access
This table shows the codes, descriptions and functions for 32-bit access.

Code Description Function
03 Read Holding Registers (4X space) Read 32-bit value or values.
16 Write Multiple Registers (4X space) Write 32-bit value or values.
NOTE: Low word of 32-bit values is stored at lower Modbus address.

Text Access (encapsulated command)
This table shows the codes, descriptions and functions for text / encapsulated command access.

This feature is provided primarily for use with SMI software when port settings configured as Modbus,
and will not be described in detail here.

Code Description Function
65 Encapsulated command Animatics command and report strings

(including response strings.)
NOTE: Requires for Class 5 firmware 5.x.4.57 or higher. Requires for Class 6 firmware 6.x.2.35 or
higher.

NOTE: RTU mode support only.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 19 of 57



Input Registers - 3X

Input Registers - 3X
The Modbus 3X input registers are 16-bit registers used to read data to the PLC (i.e., they are read
only). Regarding the SmartMotor, the set of data that can be read includes the Moog Animatics
AniBasic "RW(x)" status words — the physical I/O state inputs RW(16) and, optionally, RW(17), and
other RW(x) status words. Refer to the next table.

3X Mapping
This table describes the 3X mapping.

Address
(hex)

Byte
# Description Comments

0x0000 2 Status Register 0 Drive state and hardware limits
0x0001 2 Status Register 1 Index capture and software limits
0x0002 2 Status Register 2 Programs and communications
0x0003 2 Status Register 3 PID and motion
0x0004 2 Status Register 4 Timers
0x0005 2 Status Register 5 Interrupts
0x0006 2 Status Register 6 Commutation and bus
0x0007 2 Status Register 7 Trajectory details
0x0008 2 Status Register 8 Cam and interpolation user bits
0x0009 2 Status Register 9 N/A
0x000a 2 Status Register 10 N/A
0x000b 2 Status Register 11 N/A
0x000c 2 Status Register 12 User bits word 0
0x000d 2 Status Register 13 User bits word 1
0x000e 2 Status Register 14 N/A
0x000f 2 Status Register 15 N/A
0x0010 2 Status Register 16 I/O state, word 0
0x0011 2 Status Register 17 I/O state, word 1 (Class 5 D-style with AD1 option

only)
NOTES:
1. Addresses shown are 0-based. Legacy Modbus addresses may be translated differently by the host
controller.
2. Refer to the SmartMotor Developer's Guide for a full description of status word functionality.

LIMITATIONS: Up to 29 words can be read at a time (for the purposes of the input registers, reading is
only meaningful up to the index shown in the previous table).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 20 of 57



Holding Registers - 4X

Holding Registers - 4X
The Modbus 4X holding registers are 16-bit registers used to read data to and write data from the PLC.
Regarding the SmartMotor, the set of data that can be read/written includes the Moog Animatics
AniBasic variables a-zzz, ab, aw and al, and the GOSUB command. Refer to the next table.

4X Mapping
This table describes the 4X mapping.

Address (hex) Byte
#

AniBasic Command
Description Comments

0x2000-2033 - a to z User memory
0x2034-2067 - aa to zz User memory
0x2068-209B - aaa to zzz User memory, includes zzz

0x209C-0x2101 ab[0]-ab[203]
al[0]-al[50]
aw[0]-aw[101]

User memory array

0x8004 GOSUB(label) Execute subroutine specified by label
NOTES:

1. Addresses shown are 0-based. Legacy Modbus addresses may be translated differently by the host
controller.

2. User memory is word-addressable only. The low-addressed word is the lower half of a 32-bit
number in the controller.

LIMITATIONS: Up to 29 words can be read at a time. However, if accessing SmartMotor variables a, b,
c, etc., which are 2 words each as 32-bit variables, then 14 variables can be accessed in a read
operation. Writing multiple registers has a restriction of up to 27 words (13 variables that are 32-bits
each).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 21 of 57



Modbus RTU Communications Example

Modbus RTU Communications Example
This topic contains Modbus communications examples.

Modbus RTU Communication Setup
This section describes a typical setup for Modbus RTU (serial) communications.

l Connect the SmartMotor's RS-485 pins to the PLC, HMI or other device that is serving as the
Modbus controller. For details, refer to Cable Diagram on page 16.

l For Class 5 D-style motors, COM channel 1 (pins 5 and 6 on the 15-pin D-sub
I/O connector) provides the RS-485 connections for Modbus RTU.

l For Class 6 D-style motors, COM channel 1 (pins 19 and 20 on the HD26 high density, 26-
pin D-sub connector) provides the RS-485 connections for Modbus RTU.

l For Class 5 and 6 M-style motors, COM channel 0 (pins 2 and 3 on the
Communication connector) provides the RS-485 connection for Modbus RTU.

l Verify that the OCHN (Open Channel) command is in a user program in the connected
SmartMotor. For details, see OCHN Command on page 18.

l Verify that the SmartMotor's serial address is also used for the Modbus follower ID (i.e., both
the motor address and Modbus follower ID must match). The SADDR= command is used in the
program to set the SmartMotor serial address. Refer to the SADDR example in OCHN Command
on page 18.

l For testing, you can use a PC as the Modbus controller along with the free utility program
QModBus (http://qmodbus.sourceforge.net/). Refer to the next diagram.

4
 3

 2
 1

Channel 0
(pins 2 & 3)

M-Style SmartMotor 
(MODBUS Follower)

PC (MODBUS 
Controller)

RS232485T

SEND

RECEIVE

CBLIP-COM-FL (8 Pin)

Modbus RTU Communication Test Example

Although this wouldn't be used for a real application, it allows you to communicate with a
SmartMotor as the Modbus RTU follower. For examples, see Modbus RTU Sample Command
Sequences on page 23.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 22 of 57

http://qmodbus.sourceforge.net/


Modbus RTU Sample Command Sequences

Modbus RTU Sample Command Sequences
This topic contains some sample Modbus RTU (serial) command sequences. These examples show the
data sent from and received by the Modbus controller communicating with a SmartMotor. For these
examples, a utility software, QModBus, is used to simulate the controller, and the SmartMotor uses
Follower ID 5.

For each of these sections:
l Section title = action being performed

l SEND to motor = formatted byte stream sent from controller to the SmartMotor

l RECV from motor = formatted byte stream received by the controller from the SmartMotor

For each of these tables:

NOTE: A table is provided to illustrate the parts of the byte sequence only. The byte sequence must
be transmitted as a stream of bytes shown in the SEND/RECEIVE strings above the table (i.e., no
pause or null for the blank cells).

l Follower ID = device node address

l Funct = function code (see Supported Function Codes on page 19)

l Start Addr = start address in memory or single register address (see Input Registers - 3X on
page 20 and Holding Registers - 4X on page 21)

l No. of Reg. = number of coils or number of registers

l Byte Cnt =byte count

l Data low word = data (low word)

l Data high word = data (high word)

l CRC = cyclic redundancy check

Read input registers (status word 3)
NOTE: For information on input registers, see Input Registers - 3X on page 20.

SEND to motor: 05 04 00 03 00 01 C0 4E

RECV from motor: 05 04 02 30 90 5C 9C

Follower
ID Funct Start

Addr
No. of
Reg.

Byte
Cnt

Data
low word

Data
high word CRC

SEND 05 04 00 03 00 01 C0 4E
RECV 05 04 02 30 90 5C 9C
A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of
bytes shown in the SEND/RECEIVE strings above the table (i.e., no pause or null for the blank cells).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 23 of 57



Write variable "a" (a=100000)

QModBus Utility Showing SEND / RECEIVE Data

Write variable "a" (a=100000)
SEND to motor: 05 10 20 00 00 02 04 86 A0 00 01 97 F4

RECV from motor: 05 10 20 00 00 02 4B 8C

Follower
ID Funct Start

Addr
No. of
Reg.

Byte
Cnt

Data
low word

Data
high word CRC

SEND 05 10 20 00 00 02 04 86 A0 00 01 97 F4
RECV 05 10 20 00 00 02 4B 8C
A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of
bytes shown in the SEND/RECEIVE strings above the table (i.e., no pause or null for the blank cells).

QModBus Utility Showing SEND / RECEIVE Data

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 24 of 57



Read variable "a" (value returned is 100000)

Read variable "a" (value returned is 100000)
SEND to motor: 05 03 20 00 00 02 CE 4F

RECV from motor: 05 03 04 86 A0 00 01 57 59

Follower
ID Funct Start

Addr
No. of
Reg.

Byte
Cnt

Data
low word

Data
high word CRC

SEND 05 03 20 00 00 02 CE 4F
RECV 05 03 04 86 A0 00 01 57 59
A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of
bytes shown in the SEND/RECEIVE strings above the table (i.e., no pause or null for the blank cells).

QModBus Utility Showing SEND / RECEIVE Data

Call GOSUB(1) (Success)
NOTE: If the program label doesn’t exist (it must be loaded as a user program in the motor), then the
SmartMotor will return exception code 0x86 instead of the function code 0x06.

SEND to motor: 05 06 80 04 00 01 21 8F

RECV from motor: 05 06 80 04 00 01 21 8F

Follower
ID Funct Start

Addr
No. of
Reg.

Byte
Cnt

Data
low word

Data
high word CRC

SEND 05 06 80 04 00 01 21 8F
RECV 05 06 80 04 00 01 21 8F
A table is provided to illustrate the parts of the byte sequence only. The byte sequence must be transmitted as a stream of
bytes shown in the SEND/RECEIVE strings above the table (i.e., no pause or null for the blank cells).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 25 of 57



Call GOSUB(1) (Success)

QModBus Utility Showing SEND / RECEIVE Data

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 26 of 57



New Feature Details

New Feature Details
These sections provide details on the recently added features in the Modbus RTU implementation for
the Moog Animatics SmartMotor.

Read Packet Data from Modbus 29

Example Read Using QModBus Program 29

Limitations of Read Packet Mapping 30

Configuration Details 30

Even Word 30

Odd Word 30

Read Mapping Info 30

Example: Mapping Info Bits Detail 31

Read Packet Configuration Registers 31

Example: Read Mapping Setup 32

Example: Data Request and Response (Byte-by-Byte) 32

Resulting Data Packet 32

Modbus Single Command Write 34

Mapped Write Operation 34

Handling of Enable Bits 12 and 13 for Write Process 35

Example 35

GOSUB R2 through Modbus 37

GOSUB R2 Procedure 38

Example: GOSUB R2 38

Special status word (16-bits) 40

Example: Mapping Setup 40

Register Bitwise Description 40

SmartMotor Modbus Register Space 41

Input Registers 41

Output Registers 41

Report Command Codes 43

Write Command Codes 44

Read Mapping Setup 45

PLC Simulator 45

Example: Host to Call "VT=100000 G" 47

PLC Programming Steps 47

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 27 of 57



New Feature Details

Explicit Command Example 49

Write Packet and Response 51

Output Data 51

Command: Device address 51

Command: Modbus function code 51

Command: Starting register address 52

Command: Number of registers 52

Command: Byte Count 52

Command: Data word at 512 52

Command: Data word at 513 52

Command: Data word at 514 52

Command: Data word at 515 52

Command: CRC 52

Input Data 53

Response: From this device address 53

Response: Modbus function code 53

Response: Starting address 53

Response: Number of registers 53

Response: CRC 53

Write Packet and Response - Invalid Start Address 54

Input Data 54

Response: From this device address 54

Response: Modbus function code + 0x80 54

Response: Error code is number 2 54

Response: CRC 54

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 28 of 57



Read Packet Data from Modbus

Read Packet Data from Modbus
Class 5 SmartMotors, with firmware versions 5.0.4.53 and later for D-style motors, and 5.98.4.53 and
later for M-style motors, allow your application to read packet data from Modbus. This section
provides details on that capability.

l Uses Modbus function code 0x04 “Read Input Registers” (traditional “3X” space).

Modbus register address 256 (0-based, i.e., 3x notation is 300257).

NOTE: For the feature of reading the packet data, this is always the starting register address
regardless of the number of words desired. Starting at address 258, etc., will result in an
error.

l Select number of words / registers.

Choose a quantity that minimizes the amount of data you need to transfer.
l Mapping of specific data elements is flexible.

It is programmed by setting up SmartMotor user variables aw[0]-aw[31].

Example Read Using QModBus Program
QModBus is a free, open-source program that allows testing of the read feature and its configuration.
However, it only allows a single event of read or write at a time and does not continuously poll. The
program can be downloaded from http://qmodbus.sourceforge.net/.

QModBus Example Screen

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 29 of 57

http://qmodbus.sourceforge.net/


Limitations of Read Packet Mapping

Limitations of Read Packet Mapping
Read packet mapping has these limitations.

l There is a maximum of 16 read mappings.

l Data returned may be 16 or 32 bits. 8-bit values are not permitted. Use the word-sized
equivalent commands (read RIN(W,0), or Raw[ ] respectively).

l Floating-point, double-precision registers af[ ] are not supported. See the DFS and LFS
commands for loading and unloading values in a program between 32-bit integer storage and af[ ]
registers.

l There is a maximum of 26 words of data due to buffer limitations.

l Mapping information can reduce the size of the returned data (e.g., truncate a 32-bit to 16-bit),
but it is not allowed to increase the size.

Configuration Details
Each mapping requires 2 words in the aw[ ] array starting with aw[0] (even) and aw[1] (odd) for Mapping
0. For the list of available objects that can be mapped into the read packet, see Report Command
Codes on page 43.

Even Word

This is the “mapping info” command code, desired response size, and special features.
l Desired response size allows values to be packed to a smaller size. Typically this would be

because system values read as 32-bits, but often that would be a waste due to a limited
expected range. For instance, temperature can be reduced to 16-bits.

l Special features:
l Enable: every intended mapping must have bit 12 (value 4096) set to enable the mapping.

When enable bit is cleared (but the rest of that mapping info word remains the same), the
output data will maintain its data size (number of Modbus registers output) so that
mapped items after that point still align the same way.

l Mapping info == 8192 results in the “validate data” command bits reporting in this
mapping entry. Each mapping entry has a corresponding “valid data” bit. This indicates
success of the command code, and the returned data in the read packet is valid for that
entry. The validate data command returns that array of bits 0 to 15 in a single Modbus
register. This should be set as the final mapping entry, i.e., if 10 mappings are created,
then the 11th mapping should be the valid bits, if desired. If they are not wanted, the valid
bits can be omitted.

Odd Word

This is the index field typically placed in the data portion of the request.
l Some requested values require it, for example, user variable access (letter variables and al[ ], aw

[ ] arrays).
l If not specially mentioned, the value for the index should be set to 0 for future compatibility.

Read Mapping Info
This table details read mapping info for even-numbered aw[ ] registers.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 30 of 57



Example: Mapping Info Bits Detail

Bits 15 to 13 Bit 12 Bits 11 to 10 Bits 9 to 0
Control field, set to 0 for
mappings

1: Enable this mapping

0: Disable this mapping
Reports as the value 0, maintains the same
data size compared to enabled state so
that response data doesn't shift locations.

Desired response size. (Will be smaller if an
object smaller than this is requested.)

00: reserved (not valid)
01: 2 bytes (1 Modbus word)
10: 4 bytes (2 Modbus words)
11: reserved (not valid)

Command code

Example: Mapping Info Bits Detail
This table provides an example of the mapping info bits detail.

Desired command
Mapping info field (aw[0], aw[2], …aw[30])

Enabled (bit 12 set /
+4096) Decimal value

Binary value of
mapping info

Binary value of the
highlighted data Meaning

RVA 6212 0001 1000 0100 0100

Enable ###1 #### #### #### 1 Enabled
Desired response size
field (see ??)

#### 10## #### #### 10 4 bytes max requested

Command code field #### ##00 0100 0100 00 0100 0100 Command code

Read Packet Configuration Registers
This table details the configuration registers for read packet with example results.

NOTE: aw[0] up to aw[31] are occupied by this logic — if fewer than 16 mappings are needed, then
fewer aw[ ]registers are needed. Due to memory overlay, this also occupies al[0]-al[15] and ab[0]-ab
[63]. Therefore, care must be taken to avoid altering these locations unintentionally, such as in a
user program.

aw[ ]
register

Mapping
slot Purpose

Example
Value

(decimal) Command Resulting data size
in read packet

Corresponds to Modbus
read input register

Validity
bit

aw[0] Mapping 0 Mapping info 6164 RPA 32-bit (2 words) Register: 256 (0x0100)
Low data word of RPA

1

aw[1] Index (16-bit) 0 Register: 257 (0x0101)
High data word of RPA

aw[2] Mapping 1 Mapping info 2068 RPA (not enabled) 32-bit (2 words) Register: 258 (0x0102)
(value 0, not enabled)

0

aw[3] Index (16-bit) 0 Register: 259 (0x0103)
(value 0, not enabled)

aw[4] Mapping 2 Mapping info 5161 Raw[ ]
Index to Raw[45]: 156+45 =
201

16-bit (1 word) Register: 260 (0x0104) 1

aw[5] Index (16-bit) 201

aw[6] Mapping 3 Mapping info 5620 RTEMP(0)
reduced to 16-bit

16-bit (1 word) Register: 261 (0x0105) 1
aw[7] Index (16-bit) 0
aw[8] Mapping 4 Mapping info 0 Fill unused with 0 16-bit (1 word) Register: 262 (0x0106)

Value: 0 (nothing mapped
or enabled)

0

aw[9] Index (16-bit) 0

aw[10] Mapping 5 Mapping info 8192 Report validity data in this
slot as a result of above
mappings

16-bit (1 word) Register: 263 (0x0107)
Value: 29 binary:
0000 0000 0010 1101

1

aw[11] Index (16-bit) 0

aw[12] Mapping 6 Mapping info 0 Fill unused with 0 16-bit (1 word) Register: 264+ Value: 0
(nothing mapped or
enabled)*

N/A**

aw[13] Index (16-bit) 0

. . . Mapping... Mapping info 0 Fill unused with 0 16-bit (1 word) Register: 264+ Value: 0
(nothing mapped or
enabled)*

N/A**

. . . Index (16-bit) 0

aw[30] Mapping 15
(max pos-
sible)

Mapping info 0 Fill unused with 0 16-bit (1 word) Register: 264+ Value: 0
(nothing mapped or
enabled)*

N/A**

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 31 of 57



Example: Read Mapping Setup

aw[ ]
register

Mapping
slot Purpose

Example
Value

(decimal) Command Resulting data size
in read packet

Corresponds to Modbus
read input register

Validity
bit

aw[31] Index (16-bit) 0
* There is no requirement to read these null values, they are shown to demonstrate that it is acceptable to read them anyway, such as if a fixed
quantity transfer is already established and repeating like in a PLC.
** Because these items appear after the mapping assigned to the validity report, the state of these bits won’t appear in the validity report.

Example: Read Mapping Setup
This is an example Moog Animatics SmartMotor user program that will set up the read mapping. It is
loaded into the motor using the SmartMotor Interface (SMI) software, which is available as a free
download from the Moog Animatics website:www.animatics.com/smi.

x=0
aw[x]=2068+4096 aw[x+1]=0 x=x+2 ' RPA 32-bit
aw[x]=1428+4096 aw[x+1]=0 x=x+2 ' RW(0) 16-bit
aw[x]=1428+4096 aw[x+1]=1 x=x+2 ' RW(1) 16-bit
aw[x]=1524+4096 aw[x+1]=0 x=x+2 ' RTEMP as 16-bit
aw[x]=1065+4096 aw[x+1]=188 x=x+2 ' aw[32] 16-bit
aw[x]=1359+4096 aw[x+1]=1 x=x+2 ' GOSUB R2 echo as 16-bit
aw[x]=1359+4096 aw[x+1]=0 x=x+2 ' special as 16-bit
aw[x]=8192 aw[x+1]=0 x=x+2 ' validity report 16-bit

NOTE: +4096 sets the enable bit in each case.

Example: Data Request and Response (Byte-by-Byte)
This section provides a data request and response byte-by-byte example. Use this key to understand
the data parts:

l Device address 1

l Modbus function code 4

l Starting register 256 (0x0100) quantity 9 registers

l CRC is last 2 bytes of request (output) and response (input)

Output: 01 04 01 00 00 09 31 f0
Input: 01 04 12 86 a0 00 01 cc 03 08 00 00 1f 00 37 00 16 00 04 00 ff 9d 17

Resulting Data Packet

The next figures are Modbus polling software screen shots of the resulting data packet in Hex display
(left) and in appropriate data formats (right).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 32 of 57

http://www.animatics.com/smi


Resulting Data Packet

Resulting Data Packet in Hex Display (left) and in Appropriate Data Formats (right)

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 33 of 57



Modbus Single Command Write

Modbus Single Command Write
Class 5 SmartMotors, with firmware versions 5.0.4.53 and later for D-style motors, and 5.98.4.53 and
later for M-style motors, allow your application to write packet data via Modbus. This section provides
details on that capability.

l Holding register write multiple to address 512. (4x style: 400513) See Output Registers on page
41.

l Optionally, 512 and 513 can be written to set the map info/index (in aw[64], aw[65]) prior to
sending data field in 514-517.

l If the write starts at 514, then the previously written values of aw[64], aw[65] are used for the
map-info and index, respectively.

l Address 514 is the ‘active’ location that enacts the write.

l It is important to be aware of how the host/PLC processes multi-word values. For example
setting VT= is 2 words. If the host / PLC environment is decoupled in the way it updates its
memory for those 2 locations vs. when the Modbus write is made, then consider the one-time
event control bit so that the value can be updated without a race condition. Otherwise, if the
host knows it can send multi-word values with consistency, then the continuous update bit 12
can be used instead.

A Note on Status/Error Bits

Status/error bits are reflected through the "special status word", not as exceptions. Industry experts
advise that exceptions are only for communication-stopping problems because many PLCs will stop,
retry or do something undesired for continuous operation. Therefore, any errors generated by the
attempt to write by the application are handled as status bits on which the PLC program can close the
loop and not as communications exceptions.

Mapped Write Operation
For Modbus mapped write operations, configuration is handled in registers 512 and 513, and data in
registers 514 and higher.

For write operations, this arrangement allows for flexibility to write the configuration information and
data every Modbus write cycle or just the data. I.e., your application could start at register 514 to
continuously write just the data using the existing configuration.

NOTE: aw[64] / aw[65] are used to direct how the data written in registers 514-517 is processed.
Care must be taken to avoid altering these locations aw[64] and aw[65] unintentionally, such as in a
user program.

Modbus
register

Smart
Motor
Variable

Hex:
0x0### –
0xF###

Hex: 0x#0## –
0x#C##

Hex:
0x#0## –
0x#C##

Bit 15 Bit 14 Bit 13 Bit 12 Bits 11 to 10 Bits 9 to 0
512
(0x0200) Mapping info
for write single com-
mand operation.

aw[64] Reserved 1: G command after
update. This sup-
ports the common
use-case of
“VT=100000 G”

0: no G command
added.

NOTE: G not issued
if the command gen-
erates an error.

One-time write on
rising edge of this
bit (unless bit 12 is
a 1, thus overriding)

Sets ack bit*

See next section
for specific values.

1: continuous write
(overrides one-time
write bit 13).

Sets ack bit*

0: not continuous
write, not over-
riding bit 13.
See section 3.2 for
specific values.

Data size.
Exact match;
otherwise, an
error is
thrown.

Command
code

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 34 of 57



Handling of Enable Bits 12 and 13 for Write Process

Modbus
register

Smart
Motor
Variable

Hex:
0x0### –
0xF###

Hex: 0x#0## –
0x#C##

Hex:
0x#0## –
0x#C##

Bit 15 Bit 14 Bit 13 Bit 12 Bits 11 to 10 Bits 9 to 0
513
(0x0201) Index info for
write single command
operation.

aw[65] Index value (16-bit) Typically for user variables or command codes that involve an array of values.

514-517
(0x0202-0x0205)

N/A Data to be written. (Single value written according to aw[64] and aw[65])

* See special status word for ack bit in section 0.

See Example: Host to Call "VT=100000 G" on page 47.

Handling of Enable Bits 12 and 13 for Write Process
This table provides details on how enable bits 12 and 13 are handled for the write process.

Bit
13

Bit
12 Resulting condition

x (don’t
care)

1 Data written to Modbus registers 514-517 is accepted every cycle that it is written
(ack bit in special status 1 at this time)

0 0 No action (ack bit in special status is 0 at this time)
0 -> 1
(rising
edge)

0 Data written to Modbus registers 514-517 is accepted on this cycle that it is written
(ack bit in special status shows rising edge 0 -> 1 in response at this time)

1 0 No action (ack bit in special status remains 1 at this time)
1 -> 0 (fall-
ing edge)

0 No action (ack bit in special status shows falling edge 1 -> 0 in response at this time).

Example
These figures provide a simple example of a two-word (high word and low word) write and the resulting
change.

l Write command code for O=value (32-bit) Continuous write enabled (bit12).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 35 of 57



Example

l High word = 1, low word= 0. I.e., 0x00010000 is 65536 decimal. Note that RPA has changed as a
result of writing O=65536.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 36 of 57



GOSUB R2 through Modbus

GOSUB R2 through Modbus
Class 5 SmartMotors, with firmware versions 5.0.4.53 and later for D-style motors, and 5.98.4.53 and
later for M-style motors, allow your application to use subroutines (GOSUB R2) through Modbus. This
section provides details on that capability.

l To perform more complex operations, it may be necessary to use a subroutine in a user program
instead of directly writing the single command code.

l Writing holding registers 576-592 allows a number of aw[ ] registers to first be written, then a
GOSUB call to a specific program label to be called. This effectively acts like a function call
where the aw[ ] registers are input arguments. The subroutine can apply these values any way it
chooses.

l The write may be a single (or multiple write of length 1) to the GOSUB R2 register 592, or may
initiate a multiple register write starting at any point in the range 576-592. The purpose is to
allow a flexible number of input values to the routine while minimizing transmission time
overhead. Writing location 593 by any means will result in an error.

l GOSUB R2 offers specific protections against stack overflow. Once GOSUB R2 is called, it must
complete and exit before it can be called again. Therefore, the routine must not contain endless
loops unless there is no intent to call it a second time.

l By default, GOSUB R2 requires that the value -1 (65535) be written between calls to the desired
subroutine. This defends against PLC systems that cyclically write to the register, but their
application logic does not intend the routine to be called that often (and they don’t have control
over the transmission cycle time). That allows the PLC application program to control the
number of times the routine is called.

l There is a special command to remove the requirement of this value transition. CANCTL(19,1)
will set this mode, so that every write to address 592 will attempt to call that subroutine
number. However, it will still be ignored if a subroutine is currently running. CANCTL(19,0) will
return to the default mode, which requires writing value -1 between GOSUB calls.

l Status/error bits are reflected through the “special status word” instead of exceptions (industry
advice from experts is that exceptions are only for communication-stopping problems because
many PLCs will stop, retry or do something undesired for continuous operation. Application-level
conditions should be handled with read registers/status bits that the PLC program can close the
loop on.

NOTE: Label C0 should be avoided if there is any chance that the PLC will initially and
unintentionally write the value 0 to that location. Doing so would cause C0 to be executed!

l In a cyclic PLC environment, one way to control the pace of the logic and determine if the
GOSUB number has been written to the motor is to include the GOSUB R2 readback echo
command code as one of the mapped objects.

l aw[x]=1359+4096 aw[x+1]=1 x=x+2 ' GOSUB R2 echo as 16-bit

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 37 of 57



GOSUB R2 Procedure

GOSUB R2 Procedure
This section describes the steps for using GOSUB R2 in your Modbus application.

1. Set 592 (GOSUB R2) to -1.

2. Check the value of the GOSUB R2 echo that is mapped from that location.

Wait until the reported value is -1, then proceed with the next step.

3. Load Modbus register locations 576-591, as desired, to prepare the input data for the
subroutine. Any subrange of registers can be written within that range.

4. Set 592 (GOSUB R2) to the desired subroutine (16 in this example).

5. Check the value of the GOSUB R2 echo from that location that is mapped.

Wait until the reported value is 16, then proceed with the next step.

6. Repeat from step 1 to call the GOSUB again.

Example: GOSUB R2
These figures provide an example of GOSUB R2. The write packet is in the left pane, and the read
packet is in the right pane.

PLC simulator software was used for this example, which can be obtained from:
https://www.modbustools.com/modbus_poll.html.

GOSUB R2 Write Packet (left) and Read Packet (right)

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 38 of 57

https://www.modbustools.com/modbus_poll.html


Example: GOSUB R2

Also, see the Read Mapping Setup on page 45 for read packet configuration in a SmartMotor user
program.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 39 of 57



Special status word (16-bits)

Special status word (16-bits)
This reports conditions of the GOSUB R2 feature and the single write command operation.

Example: Mapping Setup
This SmartMotor code provides an example mapping setup for special status words (16-bit).

aw[x]=1359+4096 aw[x+1]=0 x=x+2 ' Special as 16-bit

Register Bitwise Description
Refer to the next table for the register bitwise description.

Bit 15 to 4 Bit 3 Bit 2 Bit 1 Bits 0
Reserved (reports
as 0)

Modbus write (register 512+)
error

Set when command activated (by
continuous bit or rising edge of
one-time event) and that com-
mand resulted in error.

Clear error bit by clearing con-
tinuous enable and one-time bit.

Also cleared in continuous mode
when a command completes suc-
cessfully. However, best practice
is to clear the enable bit during
any changes to mapping info com-
mand, index or value.

GOSUB R2 error: unknown pro-
gram label, etc.

Does not report if cyclic pro-
tection or nesting protections
are preventing call.

Only updated when GOSUB R2
invoked, not cleared auto-
matically, i.e., requires a suc-
cessful call to GOSUB R2 to
clear bit.

Modbus write (register 512+)
ack

Either writing continuously if
commanded, or rising edge detec-
ted on one-time command bit
and waiting for that bit to clear.

GOSUB R2 busy, has
not returned yet.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 40 of 57



SmartMotor Modbus Register Space

SmartMotor Modbus Register Space
This section provides details about the Modbus register space in the SmartMotor.

Input Registers
This table describes the Input registers, also referred to as "3x space" in Modbus terminology. Note
that these 0-based registers are read-only.

Register Address (0-based)
Modbus function code

Hex Decimal
0x0000 0

Read Input register Modbus function code 0x04 (4 decimal)

Status word RW(0)
0x0001 1 Status word RW(1)
0x0002 2 Status word RW(2)
0x0003 3 Status word RW(3)
0x0004 4 Status word RW(4)
0x0005 5 Status word RW(5)
0x0006 6 Status word RW(6)
0x0007 7 Status word RW(7)
0x0008 8 Status word RW(8)
0x0009 9 Status word RW(9)
0x000A 10 Status word RW(10)
0x000B 11 Status word RW(11)
0x000C 12 Status word RW(12)
0x000D 13 Status word RW(13)
0x000E 14 Status word RW(14)
0x000F 15 Status word RW(15)
0x0010 16 Status word RW(16)
0x0011 17 Status word RW(17)
0x0012 – 0x007F 18-127 N/A reports as 0
0x0080 – 0x00FF 128 – 255 Read Input register Modbus function code 0x04 (4 decimal) Not used (returns error if

accessed)
0x0100 256 Read Input register Modbus function code 0x04 (4 decimal) Read packed data start
0x0101 – 0x017F 257-383 Read Input register Modbus function code 0x04 (4 decimal) Reserved for read data packet

Do not start at one of these
addresses; will return error. A
read can continue from above
address.

0x0180 – 0xFFFF 384-65535 Read Input register Modbus function code 0x04 (4 decimal) Not used (returns error if
accessed)

Output Registers
This table describes the Output registers, also referred to as "4x space" in Modbus terminology. Note
that these registers are 0-based.

Register Address (0-based)
Modbus function code

Hex Decimal
0x0000-0x01FF 0-511 Holding register

Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)
Not used (returns error if
accessed)

0x0200 512

Write Holding register (write-only)

Modbus function codes:
0x06, 0x10 (6, 16 decimal)

Write to aw[64] with the write
map info.

0x0201 513 Write to aw[65] with the write
map index.

0x0202 514 Write data packet start
0x0203-0x0205 515-517 Reserved for read data packet

Do not start at one of these
addresses; will return error. A
‘write multiple’ can continue from

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 41 of 57



Output Registers

Register Address (0-based)
Modbus function code

Hex Decimal
above address.

0x0206-0x023F 518-575 Holding register
Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)

Not used (returns error if
accessed)

0x0240 576

Write Holding register (write-only)

Modbus function codes: 0x06, 0x10 (6, 16 decimal)

Write to aw[86] for the purpose
of GOSUB using this data.

0x0241 577 Same as above, but write to aw
[87]

0x0242 578 Same as above, but write to aw
[88]

0x0243 579 Same as above, but write to aw
[89]

0x0244 580 Same as above, but write to aw
[90]

0x0245 581 Same as above, but write to aw
[91]

0x0246 582 Same as above, but write to aw
[92]

0x0247 583 Same as above, but write to aw
[93]

0x0248 584 Same as above, but write to aw
[94]

0x0249 585 Same as above, but write to aw
[95]

0x024A 586 Same as above, but write to aw
[96]

0x024B 587 Same as above, but write to aw
[97]

0x024C 588 Same as above, but write to aw
[98]

0x024D 589 Same as above, but write to aw
[99]

0x024E 590 Same as above, but write to aw
[100]

0x024F 591 Same as above, but write to aw
[101]

0x0250 592 GOSUB R2
0x0251-0x1FFF 593-8191 Holding register

Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)
Not used (returns error if
accessed)

0x2000-0x2101 8192-8449 Holding register
Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)

Variables a-zzz, aw[0]-aw[101]

0x2102-0x8003 8450-32771 Holding register
Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)

Not used (returns error if
accessed)

0x8004 32772 Holding register
Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)

GOSUB
(deprecated implementation)

0x8005-0xFFFF 3277365535 Holding register
Modbus function codes: 0x03, 0x06, 0x10 (3, 6, 16 decimal)

Not used (returns error if
accessed)

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 42 of 57



Report Command Codes

Report Command Codes
This table provides a list of the available report command codes.

Mapping info field Com-
mand code (includes size
field) (aw[0], aw[2], …aw

[30]) Index field
(aw[1],aw[3],
…aw[31])

Resulting data size Notes

Desired report

Enabled
(bit 12
set) i.e.,
4096

added in

Disabled

RPA 6164 2068 0 32-bit (2 Modbus registers)
RVA 6212 2116 0 32-bit (2 Modbus registers)
RCLK 6820 2724 0 32-bit (2 Modbus registers)
RCTR(0) 6532 2436 0 32-bit (2 Modbus registers)
RCTR(1) 6532 2436 1 32-bit (2 Modbus registers)
RPC(0) 6196 2100 0 32-bit (2 Modbus registers)
RPC(1) 6196 2100 1 32-bit (2 Modbus registers)
RPC(2) 6196 2100 2 32-bit (2 Modbus registers)
RIN(W,0) 5138 1042 0 16-bit (1 Modbus register) Physical inputs 0-15.
RIN(W,1) 5138 1042 1 16-bit (1 Modbus register) -AD1 option on D-series physical

inputs 16-31.
RTEMP as 16-bit 5620 1524 0 16-bit (1 Modbus register)
RTEMP as 32-bit 6644 2548 0 32-bit (2 Modbus registers)
REA as 16-bit 5396 1300 0 16-bit (1 Modbus register)
REA as 32-bit 6420 2324 0 32-bit (2 Modbus registers)
RW(reg)
i.e., RW(0) – RW(17)

5524 1428 reg
(0-17)

16-bit (1 Modbus register)

Raw[reg]
i.e., Raw[0] – Raw[101]

5161 1065 156+reg
(156-257)

16-bit (1 Modbus register) Offset required, i.e., aw[0] is index
156.

Ral[reg]
i.e., Ral[0] – Ral[50]

6217 2121 78+reg
(78-128)

32-bit (2 Modbus registers) Offset required, i.e., al[0] is index 78.

Ra 6217 2121 0 32-bit (2 Modbus registers) Examples of the 32-bit “letter vari-
ables”
Where index is:
a=0, b=1, … z=25
aa=26, ... zz=51
aaa=52, … zzz=77

Rb 6217 2121 1 32-bit (2 Modbus registers)
Raa 6217 2121 26 32-bit (2 Modbus registers)
Raaa 6217 2121 52 32-bit (2 Modbus registers)
Rzzz 6217 2121 77 32-bit (2 Modbus registers)
Special status register 5455 1359 0 16-bit (1 Modbus register)
GOSUB R2 echo 5455 1359 1 16-bit (1 Modbus register)
Valid bits/validity report N/A see

notes
8192 0 16-bit (1 Modbus register) Special case. Does not require enable

bit.
RUIA 6612 2516 0 32-bit (2 Modbus registers)
RUJA 6676 2580 0 32-bit (2 Modbus registers)
RINA(V1, input_line) 5141 1045 input_line

(0-6)
16-bit (1 Modbus register) Analog 5 volt I/O D-series

RINA(A, input_line) 5173 1077 input_line
(0-6)

16-bit (1 Modbus register) Analog raw format
(5 volt I/O D-series)

RINA(A, input_line) 5173 1077 input_line
(16-25)

16-bit (1 Modbus register) Analog raw format
(AD1 option 24 volt I/O D-series)

RINA(V, input_line) 5125 1029 input_line
(16-25)

16-bit (1 Modbus register) (AD1 option 24 volt I/O D-series)

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 43 of 57



Write Command Codes

Write Command Codes
This table provides a list of the available command codes to write to the SmartMotor.

Desired command

Mapping info field
Command code*

(aw[64])

Index field
(aw[65])

<value> starts at Modbus register
address 514

Requires data size

Notes

O=<value> 2436 0 32-bit (2 Modbus registers)
O(0)=<value> 2436 0 32-bit (2 Modbus registers)
O(1)=<value> 2436 1 32-bit (2 Modbus registers)
O(2)=<value> 2436 2 32-bit (2 Modbus registers)
OSH=<value> 2644 0 32-bit (2 Modbus registers)
OSH(0)= <value> 2644 0 32-bit (2 Modbus registers)
OSH(1)= <value> 2644 1 32-bit (2 Modbus registers)
OSH(2)= <value> 2644 2 32-bit (2 Modbus registers)
OUT(W,0,mask)=outputstate 2066 0 32-bit (2 Modbus registers) Modbus register 514 = output state

(high/low) for all 16 bits, and Modbus
register 515 = output mask for all 16
bitsOUT(W,1,mask)=outputstate 2066 1

VT=<value> 2132 0 32-bit (2 Modbus registers)
PT=<value> 2084 0 32-bit (2 Modbus registers)
PRT=<value> 2260 0 32-bit (2 Modbus registers)
T=<value> 2420 0 32-bit (2 Modbus registers)
ADT=<value> 2180 0 32-bit (2 Modbus registers)
AT=<value> 2196 0 32-bit (2 Modbus registers)
DT=<value> 2212 0 32-bit (2 Modbus registers)
MP 3060 20 32-bit (2 Modbus registers) Write data as 0.
MV 3060 21 32-bit (2 Modbus registers) Write data as 0.
MT 3060 22 32-bit (2 Modbus registers) Write data as 0.
G 3060 2 32-bit (2 Modbus registers) Write data as 0.
X 3060 3 32-bit (2 Modbus registers) Write data as 0.
OFF 3060 0 32-bit (2 Modbus registers) Write data as 0.
MTB 3060 1 32-bit (2 Modbus registers) Write data as 0.
ZS 3060 19 32-bit (2 Modbus registers) Write data as 0.
Z 3060 25 32-bit (2 Modbus registers) Write data as 0.
RUN 3060 31 32-bit (2 Modbus registers) Write data as 0.
END 3060 30 32-bit (2 Modbus registers) Write data as 0.
GOSUB - - - See feature GOSUB R2 through Mod-

bus on page 37.
MP(<Value>) 3060 20 32-bit (2 Modbus registers) Allowed values: 0 or 1
MV(<Value>) 3060 21 32-bit (2 Modbus registers) Allowed values: 0 or 1
G(<value>) 3060 2 32-bit (2 Modbus registers) Allowed values: 0, 1, 2
X(<value>) 3060 3 32-bit (2 Modbus registers) Allowed values: 0, 1, 2
Z(word,bit) 2452 word

(0–10)
32-bit (2 Modbus registers) Bit number is written in data field (Mod-

bus register 514-515)
a=<value> 2121 0 32-bit (2 Modbus registers)
b=<value> 2121 1 32-bit (2 Modbus registers)
aa=<value> 2121 26 32-bit (2 Modbus registers)
aaa=<value> 2121 52 32-bit (2 Modbus registers)
zzz=<value> 2121 77 32-bit (2 Modbus registers)
al[reg]= <value>
i.e., al[0]=, though al[50]=

2121 78 + reg(78–
128)

32-bit (2 Modbus registers) Example: al[25]=<value>, index field
is: 78+25  = 103

aw[reg]=<value>
i.e., aw[0]=, though aw[101]=

1065 156 + reg
(156–257)

16-bit (1 Modbus register) Example: aw[39]=<value>, index field
is: 156+39  = 195

UO(W,0,mask)=state 2098 0 32-bit (2 Modbus registers) Modbus register 514 = state
(high/low) for all 16 bits, and Modbus
register 515 = mask for all 16 bits

UO(W,1,mask)=state 2098 1 32-bit (2 Modbus registers)

*These values include a size field. However, they do not include write enable bits 12 or 13, or bit 14. Add those in addition to the value shown in
the table for command code. I.e., bit 12 is +4096, bit 13 is +8192, bit 14 is +16384.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 44 of 57



Read Mapping Setup

This section shows a more detailed mapping example.

NOTE: Many other mappings are possible. This is just a demonstration that will be used for the
examples shown later in this section.

Read Mapping Setup
This is an example Moog Animatics SmartMotor user program that will set up the read mapping. It is
loaded into the motor using the SmartMotor Interface (SMI) software, which is available as a free
download from the Moog Animatics website: www.animatics.com/smi.

x=0
aw[x]=2068+4096 aw[x+1]=0 x=x+2 ' RPA 32-bit
aw[x]=2116+4096 aw[x+1]=0 x=x+2 ' RVA 32-bit
aw[x]=2724+4096 aw[x+1]=0 x=x+2 ' RCLK 32-bit
aw[x]=1300+4096 aw[x+1]=0 x=x+2 ' REA as 16-bit
aw[x]=1524+4096 aw[x+1]=0 x=x+2 ' RTEMP as 16-bit
aw[x]=1042+4096 aw[x+1]=0 x=x+2 ' RIN(W,0) 16-bit
aw[x]=1042+4096 aw[x+1]=1 x=x+2 ' RIN(W,1) 16-bit
aw[x]=2436+4096 aw[x+1]=1 x=x+2 ' RCTR(1) 32-bit
aw[x]=1428+4096 aw[x+1]=0 x=x+2 ' RW(0) 16-bit
aw[x]=1428+4096 aw[x+1]=1 x=x+2 ' RW(1) 16-bit
aw[x]=1428+4096 aw[x+1]=2 x=x+2 ' RW(2) 16-bit
aw[x]=1428+4096 aw[x+1]=3 x=x+2 ' RW(3) 16-bit
aw[x]=1065+4096 aw[x+1]=188 x=x+2 ' aw[32] 16-bit
aw[x]=1359+4096 aw[x+1]=1 x=x+2 ' GOSUB R2 echo 16-bit
aw[x]=1359+4096 aw[x+1]=0 x=x+2 ' special 16-bit
aw[x]=8192 aw[x+1]=0 x=x+2 ' validity report 16-bit

NOTE: +4096 sets the enable bit in each case.

PLC Simulator
The Modbus Poll PLC simulator, available from https://www.modbustools.com/modbus_poll.html, shows
a setup configured to cyclically write to the single command code write area (write multiple holding
registers 512-517), the GOSUB R2 area (write multiple holding registers 576-592), and reads the
mapped/packet data area (input registers starting with 256, data ends at 275 in this case). See the
next figures.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 45 of 57

http://www.animatics.com/smi
https://www.modbustools.com/modbus_poll.html


PLC Simulator

l Write multiple holding registers 512-517:

l Write multiple holding registers 576-592:

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 46 of 57



Example: Host to Call "VT=100000 G"

l Read input registers 256-275:

Example: Host to Call "VT=100000 G"
The next example describes how to configure the host to call "VT=100000 G". For this example:

l Refer to the above figures where memory locations in the PLC (shown in the left-side column in
each window) correspond to the Modbus registers that will be written or read on the next
Modbus update cycle. An actual PLC system may employ other memory locations depending on
various factors, including multiple Modbus devices, etc.

l The update cycles write/read the entire blocks of addresses as a "write multiple" or "read
multiple" operation, as those are typically configured to a fixed range during PLC operation.
Therefore, this example works regardless of synchronization between PLC program memory
writes/reads and Modbus request/response cycles.

PLC Programming Steps
To program the PLC, use these steps:

1. Write location 512 = 0

2. Write location 513 = 0

3. Read special bits (mapped to location 274 in this particular example), confirm ack (bit 1) is 0.

If not 0, wait for next update cycle. The fact that location 512 was written to a 0 will eventually
be written to the motor, then the next read of the mapped packet back to PLC will have the
updated ack bit.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 47 of 57



PLC Programming Steps

4. Write data 0x86A0 to location 514, write data 0x0001 to location 515. This prepares the value
100000 (decimal)

It is OK if part or all of this is sent in the next Modbus write cycle. It does not have immediate
effect because the enable bits as a part of location 512 are 0.

5. Write location 512 = 26708 (0x6854). This sets the one-time event bit and the "G" flag bit, and
the command is VT= (0x854).

6. Read special bits (mapped to location 274), confirm ack (bit 1) is 1. Wait for update write/read
exchange until this ack occurs.

7. Proceed with other commands starting from step 1 above (where location 512 is set to 0).

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 48 of 57



Explicit Command Example

Explicit Command Example
In some systems, the Modbus host/control application may have total control of the time at which
commands are written, and may also be able to control the range of registers written to on the fly.
Therefore, this example gives a more direct way rather than the "PLC method", which would typically be
less flexible in that regard.

When immediate action is desired, only send the "write multiple holding registers" Modbus function at
the time the action is desired, and refrain from writing when no action is desired.

The "enable continuous" bit is provided in the Modbus info register (512), bit 12. This has an immediate
effect when data in Modbus register 514+ are written.

Once the Modbus addresses 512 and 513 are written, it is optionally permitted to simply write the
required amount of data to locations 514 – 517. This shortens the amount of data written, and keeps
reusing the map information previously written to aw[64], aw[65] (Modbus locations 512 and 513).

For example, in this case, VT= is a 32-bit value. Therefore 2 x 16-bit words must be written at 514 and
515. These must be written in a single "write multiple" Modbus function. Location 514 is the least-
significant word. The write cannot begin at 515 or higher. Writing address 514 is the "trigger" to accept
the rest of the data and take action.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 49 of 57



Explicit Command Example

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 50 of 57



Write Packet and Response

Write Packet and Response
This section provides a more detailed view of the Modbus write packet and response: Write multiple
holding registers.

The next sections provide a breakdown of the Output and Input data.

Output Data
This section provides descriptions of the Output data. Each item is highlighted to show the command
part it represents.

Command: Device address

Command: Modbus function code

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 51 of 57



Command: Starting register address

Command: Starting register address

Command: Number of registers

Command: Byte Count

Command: Data word at 512

Command: Data word at 513

Command: Data word at 514

Command: Data word at 515

Command: CRC

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 52 of 57



Input Data

Input Data
This section provides descriptions of the Input data. Each item is highlighted to show the response part
it represents.

Response: From this device address

Response: Modbus function code

NOTE: This response is echoed back; it is not an error function code.

Response: Starting address

Response: Number of registers

Response: CRC

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 53 of 57



Write Packet and Response - Invalid Start Address

Write Packet and Response - Invalid Start Address
This section is similar to the previous Modbus write packet and response. However, it shows an
erroneous attempt to write to an invalid starting address.

The next sections provide a breakdown of the Input data.

Input Data
This section provides descriptions of the Input data. Each item is highlighted to show the response part
it represents.

Response: From this device address

Response: Modbus function code + 0x80

NOTE: This indicates an error in the Modbus request.

Response: Error code is number 2

Response: CRC

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 54 of 57



Troubleshooting

Troubleshooting
This table provides troubleshooting information for solving common problems. For additional support
resources, see the Moog Animatics Support page at:

http://www.animatics.com/support.html

Issue Cause Solution
Communication and Control Issues
Motor control power
light does not
illuminate.

Control power is off,
disconnected or
incorrectly wired.

Check that control power is connected to the
proper pins and turned on. For connection
details, see Cable Diagram on page 16.

Motor has routed drive
power through drive-
enable pins.

Ensure cabling is correct and drive power is
not being delivered through the 15-pin
connector.

Motor is equipped with
the DE option.

To energize control power, apply 24-48 VDC
to pin 15 and ground to pin 14.

Motor does not
communicate with SMI.

Transmit, receive or
ground pins are not
connected correctly.

Ensure that transmit, receive and ground are
all connected properly to the host PC.

Motor program is stuck in
a continuous loop or is
disabling communications.

To prevent the program from running on
power up, use the Communications Lockup
Wizard located on the SMI software
Communications menu.

Motor does not
communicate with
Modbus RTU.

No OCHN command in
program.

Verify that the OCHN command is used in
program to set communication parameters.
Modbus RTU does not have default settings.

Incorrect baud rate. Check the settings used for the OCHN
command.

Incorrect Modbus RTU
address.

Use SADDR or ADDR= command in program
to set the correct address at startup.

Motor stops
communicating after
power reset, requires
re-detection.

Motor does not have its
address set in the user
program. NOTE: Serial
addresses are lost when
motor power is off or
reset.

Use the SADDR or ADDR= command within
the program to set the motor address.

Motor disconnects from
SMI sporadically.

COM port buffer settings
are too high.

Adjust the COM port buffer settings to their
lowest values.

Poor connection on serial
cable.

Check the serial cable connections and/or
replace it.

Power supply unit (PSU)
brownout.

PSU may be too high-precision and/or
undersized for the application, which causes it
to brown-out during motion. Make moves less
aggressive, increase PSU size or change to a
linear unregulated power supply.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 55 of 57

http://www.animatics.com/support.html


Troubleshooting

Issue Cause Solution
Red PWR SERVO light
illuminated.

Critical fault. To discover the source of the fault, use the
Motor View tool located on the SMI software
Tools menu.

Common Faults
Bus voltage fault. Bus voltage is either too

high or too low for
operation.

Check servo bus voltage. If motor uses the DE
power option, ensure that both drive and
control power are connected.

Overcurrent occurred. Motor intermittently drew
more than its rated level
of current. Does not cease
motion.

Consider making motion less abrupt with
softer tuning parameters or acceleration
profiles.

Excessive temperature
fault.

Motor has exceeded
temperature limit of 85°C.
Motor will remain
unresponsive until it cools
down below 80°C.

Motor may be undersized or ambient
temperature is too high. Consider adding heat
sinks or forced air cooling to the system.

Excessive position
error.

The motor's commanded
position and actual
position differ by more
than the user-supplied
error limit.

Increase error limit, decrease load or make
movement less aggressive.

Historical
positive/negative
hardware limit faults.

A limit switch was tripped
in the past.

Clear errors with the ZS command.

Motor does not have limit
switches attached.

Configure the motor to be used without limit
switches by setting their inputs as general
use.

Programming and SMI Issues
Several commands not
recognized during
compiling.

Compiler default firmware
version set incorrectly.

Use the Compiler default firmware version
option in the SMI software Compile menu to
select a default firmware version closest to
the motor's firmware version. In the SMI
software, view the motor's firmware version
by right-clicking the motor and selecting
Properties.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E

Page 56 of 57



www.animatics.com

For Animatics product information, visit 
For more information or to find the office nearest you, email animatics_sales@moog.com

Moog is a registered trademark of Moog Inc. and its subsidiaries.  
All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries.  

 
 

TAKE A CLOSER LOOK
 

Americas - West Americas - East Europe Asia
Moog Animatics Moog Animatics Moog GmbH  Moog Animatics
2581 Leghorn Street 1995 NC Hwy 141  Memmingen Branch

Allgaeustr. 8a
 Kichijoji Nagatani City Plaza 405

Mountain View, CA 94043 Murphy, NC 28906  
87766 Memmingerberg

 1-20-1, Kichijojihoncho
United States United States 

Germany
 Musashino-city, Tokyo 180-0004

   Japan

Tel: +1 650-960-4215 Tel: +49 8331 98 480-0 Tel: +81 (0)422 201251
Email: animatics_sales@moog.com Email: info.mm@moog.com Email: mcg.japan@moog.com

www.animatics.com

Moog Animatics, a sub-brand of Moog Inc. since 2011, is a global leader in integrated automation solutions. With over 30 
years of experience in the motion control industry, the company has U.S. operations and international offices in Germany and 
Japan as well as a network of Automation Solution Providers worldwide.

©2014-2022 Moog Inc. All rights reserved. All changes are reserved.

Moog Animatics Class 5 and 6 SmartMotor™ Modbus RTU Guide, Rev. E
PN: SC80100014-001


	Introduction
	Purpose
	New Feature Highlights
	Safety Information
	Safety Symbols
	Other Safety Considerations
	Motor Sizing
	Environmental Considerations
	Machine Safety
	Documentation and Training
	Additional Equipment and Considerations

	Safety Information Resources

	Additional Documents
	Related Guides
	Other Documents

	Additional Resources
	Modbus Resources

	System Connections
	Cable Diagram
	Maximum Cable Length

	Using Modbus
	Modbus RTU Description
	OCHN Command
	M-style Motor Example
	D-style Motor Example


	Legacy Modbus RTU Discussion
	Supported Function Codes
	16-Bit Access
	32-Bit Access
	Text Access (encapsulated command)

	Input Registers - 3X
	3X Mapping

	Holding Registers - 4X
	4X Mapping

	Modbus RTU Communications Example
	Modbus RTU Communication Setup

	Modbus RTU Sample Command Sequences
	Read input registers (status word 3)
	Write variable a (a=100000)
	Read variable a (value returned is 100000)
	Call GOSUB(1) (Success)


	New Feature Details
	Read Packet Data from Modbus
	Example Read Using QModBus Program
	Limitations of Read Packet Mapping
	Configuration Details
	Even Word
	Odd Word

	Read Mapping Info
	Example: Mapping Info Bits Detail
	Read Packet Configuration Registers
	Example: Read Mapping Setup
	Example: Data Request and Response (Byte-by-Byte)
	Resulting Data Packet


	Modbus Single Command Write
	Mapped Write Operation
	Handling of Enable Bits 12 and 13 for Write Process
	Example

	GOSUB R2 through Modbus
	GOSUB R2 Procedure
	Example: GOSUB R2

	Special status word (16-bits)
	Example: Mapping Setup
	Register Bitwise Description

	SmartMotor Modbus Register Space
	Input Registers
	Output Registers

	Report Command Codes
	Write Command Codes
	Read Mapping Setup
	PLC Simulator
	Example: Host to Call VT=100000 G
	PLC Programming Steps

	Explicit Command Example
	Write Packet and Response
	Output Data
	Command: Device address
	Command: Modbus function code
	Command: Starting register address
	Command: Number of registers
	Command: Byte Count
	Command: Data word at 512
	Command: Data word at 513
	Command: Data word at 514
	Command: Data word at 515
	Command: CRC

	Input Data
	Response: From this device address
	Response: Modbus function code
	Response: Starting address
	Response: Number of registers
	Response: CRC


	Write Packet and Response - Invalid Start Address
	Input Data
	Response: From this device address
	Response: Modbus function code + 0x80
	Response: Error code is number 2
	Response: CRC



	Troubleshooting

