

DeviceNet SmartMotorTM Specifications

1

DeviceNet SmartMotorTM Specifications

2

Unit Specifications

Description Min Typical Max Units

Absolute Maximum Ratings
Current draw from on-board +5VDC output 210 mA DC
Ambient Temperature:

Operating 0 +70 °C
Storage 0 +70 °C

RS-232 Operating Characteristics
RS-232 Transmitters ± 12 VDC
RS-232 Receivers ± 12 VDC

Power supply requirements
Motor Power Supply (20 to 48V) 0.1 Depends on 40 A
 Model
DeviceNet Supply (16 to 32VDC) 100 mA

I/O specifications

 Input TTL “ON” threshold 2.0 V

 Input TTL “OFF” threshold 0.7 V

 Output TTL “ON” 2.2 V

 Output TTL “OFF” 0.7 V

Output Current, sinking 10 mA
Output Current, sourcing 4 mA
+5V DC Supply, Output Current 210 mA

DeviceNet Overview

DeviceNet is a low-cost, open network standard that provides for reduced system complexity and significant
reductions in wiring costs. DeviceNet allows different industrial devices such as a SmartmotorTM and devices from
other manufacturers (sensors, actuators, et al.) to work together on a single network, controlled by any number of
commercially available DeviceNet master (or scanner) systems.. DeviceNet may also provide communications
links between subsystems or system-level components. The results are improved control communications
between devices and important device-level diagnostics. The DeviceNet SmartmotorTM can only be configured as
a DeviceNet slave device, not a master.

DeviceNet is based on a broadcast-oriented, communications protocol called CAN (Controller Area Network).
This protocol was originally developed for the European automotive market to replace expensive wire harnesses
with low-cost network cable. As a result, CAN has a fast response time and is highly reliable. Consumer and
commercial demand for CAN was a key factor in lowering the price and increasing the performance of CAN. With
CAN, any node may transmit if the bus is not busy. If two or more nodes begin transmitting at the same time, the
message with the lowest CAN ID will complete the transmission. DeviceNet adds a layer above CAN that allows
logical connections to exist among nodes and defines message formats. A single DeviceNet node may have up to
64 nodes, each with a unique address (MAC ID). DeviceNet supports baud rates of 125, 250, and 500 KB. As the
baud rate increases, the maximum allowable distance of cable between any two devices decreases. There is only
one baud rate allowed per network, and all devices must operate at the same baud rate. The table below lists
some of the major features of DeviceNet.

DeviceNet SmartMotorTM Specifications

3

Table 1: Device Net Features
Feature Description
Network Size Up to 64 nodes
Network Length Selectable end-to-end network distance varies with speed

Baud Rate Distance
125 Kbps 500 m (1640 ft)
250 Kbps 250 m (820 ft)
500 Kbps 100 m (328 ft)

Data Packets 0-8 bytes
Bus Topology Linear (trunkline/dropline): power and signal on the same network

cable
Bus Addressing Peer-to-Peer with Multicast (one-to-many);

Multi-Master and Master/Slave special case;
Polled or change-of-state (exception-based)

System Features Removal and replacement of devices from the network under power

More DeviceNet information can be obtained from the ODVA at: http://www.odva.org/

Connector Information

Animatics SmartMotor™ uses a standard Device Net connector . The conncetor on the SmartMotor is a :
 Micro-change, 5P, male, straight , M12 external thread.

PINOUT

Pin 1: Drain Not internally connected

 Pin 2: V+ , DeviceNet Power *

 Pin 3: V- , DeviceNet Power *
 Pin 4: CAN H
 Pin 5: CAN L

* Must supply Device Net power 16 VDC to 32 VDC to Device Net connector.

 SmartMotor™ internally isolates Device Net Power from controller and amplifier power.

Figure 1: DeviceNet Connector Pinout

 (Face View of Motor)

DeviceNet SmartMotorTM Specifications

4

LED Status Indicators

 DeviceNet motors are equipped with Net status and Mod status LED indicators, refer to Figure 2 and 3 for
 location, in addition to the trajectory and servo-amplifier status LEDs. The status of the LED indicators are:

LED,
SERVO-AMPLIFER

I/O
CONNECTOR

POWER
AND
COMMUNICATION

LED,
TRAJECTORY LED, NS

NET
STATUS

LED, MS
MODULE
STATUS

I/O
CONNECTOR

POWER AND
COMMUNICATION

LED,
TRAJECTORY

LED,
SERVO-AMPLIFIER

LED, MS
MODULE
STATUS

LED, NS
NET
STATUS

 Figure 2: SM2300D-DN SERIES Figure 3: SM3400D-DN SERIES
 LED INDICATORS LED INDICATORS

 MS, MODULE STATUS
 GREEN= Operating in normal condition.
 FLASHING GREEN= Device is on stand-by and needs commissioning due to missing,
 incomplete or incorrect configuration. Have not yet established
 communications between the SmartMotor DeviceNet board and
 the SmartMotor controller.
 RED= Device has non-recoverable fault.
 FLASHING RED= Device has recoverable fault.
 FLASHING RED/GREEN= Device is in self-test
 OFF (CLEAR)= No power to DeviceNet connector.

NS, NET STATUS

 GREEN= Online and has established connection to other devices.
 FLASHING GREEN= On-line, but has no connection to other devices.
 RED= Failed communication. SmartMotor™ can not communicate on the
 network due to duplicate MAC ID or CAN BUSSOFF error.
 Check MAC ID and Baudrate.
 FLASHING RED= One or more Device Net I/O are in timed out state.
 FLASHING RED/GREEN= Flashing Red/Green NS, in conjunction with the MS LED, indicates the
 device is in self-test.
 OFF (CLEAR)= No power to device connector.

The standard SmartMotor status indicate:
 TRAJECTORY STATUS
 GREEN= In a calculated motion profile.
 OFF (CLEAR)= Not in a calculated motion profile or motion profile mode <default state>

DeviceNet SmartMotorTM Specifications

5

 SERVO-AMPLIFIER STATUS
GREEN= Servo-amplifier on.

 RED = Stand by, servo- amplifier off <default state>

How DeviceNet works with our SmartmotorTM

The DeviceNet SmartmotorTM is designed in a modular fashion, with the standard SmartmotorTM module adapted
to work cooperatively with a DeviceNet gateway. The DeviceNet gateway uses a separate dedicated controller
for DeviceNet operation, which means that varying network traffic demands will not affect the ability of the
SmartmotorTM to handle motion and I/O tasks. The standard SM is equipped with two serial ports. These ports
are configured such that one is RS-232 format and one is RS-485 format. On the DeviceNet version of the
SmartmotorTM , the RS-485 port has been retained for use with the DeviceNet gateway, so the RS-485 port is no
longer available for external use.

Firmware Versions

Animatics’ motion control firmware defines the motion modes, functions, I/O and communication functions that the
SmartMotor™ .
The motion control firmware version that are compatible with the Devicenet are:
 Standard firmware version: 4.15, 4.15B,4.15C and newer
 Optional Firmware versions: 4.75, 4.76 and newer

To find out which version of the firmware you have, send the command “RSP” to the serial communication line
using an ASCII terminal or Animatic’s SmartMotor™ Interface (SMI) software. The terminal screen show:

24576/415 Indicates firmware Version 4.15
24576/415B Indicates firmware Version 4.15B
24576/415C Indicates firmware Version 4.15C

 24576/475 Indicates firmware Version 4.75

DeviceNet SmartMotorTM Specifications

6

Setting the MAC ID and Baud Rate

The DeviceNet MAC ID and baud rate are set from non-volatile memory at power-up. The motor is initially set for
500 kbaud and MAC ID 3. To change these values, from your PC, over the RS232 serial port connected to the
motor, using the Animatics SmartMotor™ Interface (SMI) software, in the SmartMotor™ Terminal window
(Communicate>Talk to SmartMotors™), issue the following commands:

RSP ‘returns version number—to verify communications with the

 ‘motor.
 y=125 ‘desired baud rate in kbaud: 125, 250, or 500 .
 z=3 ‘desired MAC ID: 0 to 63 .
 EPTR=32004 ‘set EEPROM memory pointer.
 VST(y,2) ‘store into EEPROM.

To verify the values have been set correctly, issue the following commands:

Rw ‘report value of w, verify returns 0 .
 Rx ‘report value of x, verify returns 0 .
 EPTR=32004 ‘set EEPROM memory pointer .
 VLD(w,2) ‘retrieve data from EPROM .
 Rw ‘verify baudrate in kbaud .
 Rx ‘verify MAC ID .

Cycle power on the motor to cause the new values to take effect.

Consult the User’s Guide for more information on developing user programs for the SmartMotor™.

Connecting to a DeviceNet network

The SmartMotor can connect to DeviceNet using standard micro-change cables and tees. Refer to figure for a
sample set up.
The SmartMotor requires 16 to 32VDC provided to the DeviceNet connetor from the DeviceNet in addition to the
20 to 48VDC that powers the SmartMotor controller/amplier/motor .

DeviceNet SmartMotorTM Specifications

7

Figure 4: DeviceNet Network

How to use the EDS file

To configure your network to communicate with the DeviceNet SmartmotorTM, you will need an .EDS file, which
can be downloaded from our website at http://www.animatics.com. Be certain that the .EDS file’s version number
or revision matches your actual device before using the file. If the revision number is more recent than your
physical device, it may contain parameters that aren’t supported by the device. Use the software for the master
scanner device to incorporate this configuration file into the network setup.

Scaling Motion Units

When reading/writing motion parameters to and from the SmartMotor™, there are some conversion factors that
the user should be aware of:

Distance Units – There is a 1:1 correlation between distance units when using DeviceNet parameters to
read/write values. Distances are measured in encoder counts.

Velocity Units – Due to the nature of our trajectory generator, there is a scale factor required when comparing
DeviceNet velocity units and motor velocity units. There is a multiplier value of 16.10604266 to get from
DeviceNet counts/sec to internal velocity values. In other words, setting an actual speed of 1000 counts/sec,
would result in a motor V value of 16,106 units. On a motor with an encoder resolution of 4000 counts/rev, this
would result in an approximate speed of 0.25 revs/sec.

Acceleration Units - Again, due to the nature of our trajectory generator, there is a scale factor required when
comparing acceleration units. There is a divisor value of 252.6362193 to get from counts/sec2 to internal
acceleration values. In other words, setting an actual acceleration of 4,000,000 counts/sec2, would result in a
motor A value of 15,833 units (remember that Version 4.xx SmartMotors only support integer math, so we must
use an integer). On a motor with an encoder resolution of 4000 counts/rev, this would result in an approximate
acceleration of 1000 revs/sec2.

DeviceNet SmartMotorTM Specifications

8

DeviceNet control of the SmartmotorTM

To send and receive messages to and from the DeviceNet SmartMotor™, the user must thoroughly understand
the command structures used by DeviceNet. DeviceNet communications are via explicit messaging (GET/SET
attribute) and/or I/O Polling. The I/O polling messages conform to a subset of the Position Controller Device
Profile, specified in ODVA DeviceNet Specification Volume II Release 2.0 Errata 3, sections 3-12.4, 3-12.5, 6-24,
and 6-25. Please refer to these specifications as a reference for detailed descriptions.

Using DeviceNet in conjunction with internal user programs

The motor may execute a user program simultaneously with DeviceNet operation subject to the following rules:

1. The program must contain the open Devicenet communcation channel command near the beginnig of

theprogram. The open devicenet communication command is :

i. OCHN(RS4,1,N,19200,1,8,C) ‘Reserve channel 1 for Device Net activity

2. The program must not access communications channel 1, which are I/O pin E and I/O pin F located on
pin 5 and pin 6 on the DB15 connector.

3. The program must not modify variables a through e. These are used internally for Device Net activity.
4. The program must not conflict with the effects of commands being sent through DeviceNet.

Execution of the program will tend to increase DeviceNet latency. PRINTs, especially long PRINTs to channel 0
should be avoided. Communications polling (on channel 0) should also be avoided if possible. A program
intended to run only on power up or in specific circumstances should END, so the full processing power of the
motor can be devoted exclusively to DeviceNet .

WAIT=nnn commands interspersed in the user program would decrease the proportion of communication time
devoted to the user program. During a WAIT or a TWAIT command, the user program would not affect DeviceNet
latency.

The length of commands should be kept to a minimum, not to exceed 16 characters including the command
terminator (space or enter). Pending DeviceNet channel 1 commands, serial port channel 0 commands, and user
program commands are executed one at a time, in round robin order. High bandwidth applications may need to
give consideration to the total command data flow to the motor from all three sources.

DeviceNet SmartMotorTM Specifications

9

Explicit Messages - Object Class, Instance, and Attribute List

This is a listing of attribute id, access rule, name, DeviceNet data type, Description, and a “Rosetta stone”
correspondence between DeviceNet Get and Set actions and SmartMotor™ ASCII language commands (where
there is a translation).

Objects described are the Position Controller Supervisor class and object instance, the Position Controller class
and object instance, and a (vendor-specific) SmartMotor™ I/O class and object instances for the motor’s digital i/o
pins.

Table 2: Position Controller Supervisor, Class 36 decimal, Instance 0 (Class 0)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Get Revision USINT Revision of this object 02 N/A
32 Get Consumed

Command
Message

Array of byte Content of the Command
Message

 N/A

33 Get Produced
Response
Message

Array of byte Content of the Response
Message

 N/A

Table 3: Position Controller Supervisor, Class 36 decimal, Instance 1

Attribute
ID

Acces
s

Rule
Name DeviceNet

Data Type
Description of

Attribute Get Action Set Action

3 Get Axis Number USINT Returns the axis number (which is
the same as the instance for this
object).

fixed at 1 N/A

5 Get General Fault BOOL General Fault flag.
1=fault

RW, logical OR
of status bits
1, 2, 4, 5, 6, 11,
12, 13, 14 & 15

N/A

6 Get1 Command
Message Type

USINT The command message type
being sent by the controlling
device

 N/A1

7 Get1 Response
Message Type

USINT The response message type to be
returned to the controlling device

 N/A1

15 Set Index Arm BOOL Index trigger arm flag used to arm
the Index input

 0:
1: RI

18 Get Index Position DINT Index trigger position reflects the
position at the time the index is
triggered

RI N/A

25 Set Follow Enable BOOL 0=disabled
1=enabled

RMODE == F or
S or X-> 1

1, <encoder>:
MF4 MFR G

1,
<step+dir>:
MS MSR G

0:

27 Set Follow Divisor DINT Used to calculate the Command
Position by dividing the Follow
Axis position with this value

a=MFDIV
Ra

MFDIV=nnn

28 Set Follow Multiplier DINT Used to calculate the Command
Position by dividing the Follow
Axis position with this value

a=MFMUL
Ra

MFMUL=nnn

100 Set Follow Type USINT 0=Step+Dir
1=Encoder

DeviceNet SmartMotorTM Specifications

10

Table 4: Position Controller, Class 37 decimal, Instance 0 (Class 0)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Get Revision USINT Revision of this object 02 N/A

Table 5: Position Controller, Class 37 decimal Instance 1

Attribute
ID

Acces
s

Rule
Name DeviceNet

Data Type
Description of

Attribute Get Action Set Action

1 Get Number of
Attributes

USINT Returns the total number of
attributes supported by this
object in this device

fixed N/A

2 Get Attribute List Array of
USINT

Returns an array with a list of
the attributes supported by this
object in this device

fixed N/A

3 Set Mode USINT Operating Mode RMODE,
P/R=0,
V=1,
 T=2

0: MP
1: MV
2: MT

6 Set Target Position DINT Position value to set absolute: P=nnn

 incremental:
D=nnn

7 Set Target Velocity DINT Velocity value to set RV V=nnn
8 Set Acceleration DINT Acceleration rate RA A=nnn

10 Set Incremental
Position Flag

BOOL 0=absolute, 1=incremental

11 Set Load Data/ Start
Profile/ Profile in
Progress

BOOL On set, loads data and starts
the current profile. On get,
reports Profile in Progress

RW status bit
0

1: G
0: N/A

13 Set Actual Position DINT Actual absolute position. Set to
redefine actual position.

RP (or RPW) O=nnn

14 Get Actual Velocity DINT Reports actual velocity RV (only valid
in Torque
Mode)

N/A

15 Get Commanded
Position

DINT The instantaneous calculated
position

RP (or RPW)
+ RPE

N/A

16 Get Commanded
Velocity

DINT The instantaneous calculated
velocity

RV N/A

17 Set Enable BOOL 0=disable
1=enable

 1: G or MP D=0 G,
allow G or MT

0: OFF

20 Set Smooth Stop BOOL Smooth Stop motor 0 1: X
21 Set Hard Stop BOOL Hard Stop motor 0 1: S
23 Set Direction BOOL Instantaneous Direction

0=reverse, 1=forward
Position Mode
(direction of
move)
Velocity Mode
(sign of
Velocity).
Torque Mode,
sign of Torque

V=+/-nnn G
T=+/-nnn

25 Set Torque DINT Output Torque RT T=nnn or T=-nnn
29 Get Wrap Around BOOL Position Wrap Around Indicator

Flag
RW status bit
4

N/A

30 Set Kp INT Proportional Gain RKP KP=nnn F
31 Set Ki INT Integral Gain RKI KI=nnn F
32 Set Kd INT Derivative Gain RKD KD=nnn F
33 Set MaxKi INT Integration Limit RKL KL=nnn F
35 Set Velocity Feed

Forward
INT Velocity feed forward gain value RKV KV=nnn F

37 Get Sample Rate INT Update sample rate in micro-
seconds

RSP N/A

40 Get Feedback
Resolution

DINT Number of actual position
feedback counts per revolution

EPTR=32000
VLD(a,1)
Ra

N/A

DeviceNet SmartMotorTM Specifications

11

Attribute
ID

Acces
s

Rule
Name DeviceNet

Data Type
Description of

Attribute Get Action Set Action

41 Get Motor Resolution DINT Number of motor steps per
revolution

EPTR=32000
VLD(a,1)
Ra

N/A

45 Set Max Dynamic
Following Error

DINT Maximum allowable following
error when the motor is in
motion

RE E=nnn

47 Set Following Error
Fault

BOOL Following error occurrence flag RW status bit
5

Table 5 (Continued): Position Controller, Class 37 decimal Instance 1

Attribute
ID

Acces
s

Rule
Name DeviceNet

Data Type
Description of

Attribute
Get Action Set Action

48 Get Actual Following
Error

DINT Actual Following error RPE N/A

49 Set Hard Limit Action USINT Hard Limit Action code
0=Servo off
2=Smooth Stop

 0: F=0
2: F=1

50 Get Forward Limit BOOL Forward Limit stop active RW status bit
1

N/A

51 Get Reverse Limit BOOL Reverse Limit stop active RW status bit
2

N/A

58 Get Load Data
Complete

BOOL valid data for a valid I/O
command message type has
been loaded into the position
controller

 N/A

100 Set Current Limit DINT Current limit of motor
0 to 1023

RAMPS AMPS=nnn

Table 6: SmartMotor I/O, Class 112 decimal, Instance 0 (Class 0)
Attribute

ID
Access

Rule
Name DeviceNet

Data Type
Description of

Attribute
Get Action Set Action

1 Get Discrete Data Array of byte Array of Discrete Data bits for
all defined instances.
Bit 0 = Instance 1 Discrete Data

 N/A

Table 7: SmartMotor I/O, Class 112 decimal, Instance 1 (Pin A)
Attribute

ID
Access

Rule
Name DeviceNet

Data Type
Description of

Attribute
Get Action Set Action

1 Set Function USINT 0=output, 1=input 0: UAO
1: UAI

2 Set Output Latch BOOL 0=low, 1=high 0: UA=0
1: UA=1

3 Get Discrete Data BOOL 0=low, 1=high RUA N/A
4 Get Analog Data INT 0 to 1023 RUAA N/A

Table 8: SmartMotor I/O, Class 112 decimal, Instance 2 (Pin B)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Set Function USINT 0=output, 1=input 0: UBO
1: UBI

2 Set Output Latch BOOL 0=low, 1=high 0: UB=0
1: UB=1

3 Get Discrete Data BOOL 0=low, 1=high RUB N/A
4 Get Analog Data INT 0 to 1023 RUBA N/A

DeviceNet SmartMotorTM Specifications

12

Table 9: SmartMotor I/O, Class 112 decimal, Instance 3 (Pin C)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Set Function USINT 0=output, 1=input, 3=special
(positive limit action)

 0: UCO
1: UCI
2: UCP

2 Set Output Latch BOOL 0=low, 1=high 0: UC=0
1: UC=1

3 Get Discrete Data BOOL 0=low, 1=high RUC N/A
4 Get Analog Data INT 0 to 1023 RUCA N/A

Table 10: SmartMotor I/O, Class 112 decimal, Instance 4 (Pin D)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Set Function USINT 0=output, 1=input, 3=special
(negative limit action)

 0: UDO
1: UDI
2: UDM

2 Set Output Latch BOOL 0=low, 1=high 0: UD=0
1: UD=1

3 Get Discrete Data BOOL 0=low, 1=high RUD N/A
4 Get Analog Data INT 0 to 1023 RUDA N/A

Table 11: SmartMotor I/O, Class 112 decimal, Instance 5 (Pin E)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Set Function USINT 0=output, 1=input 0: UEO
1: UEI

2 Set Output Latch BOOL 0=low, 1=high 0: UE=0
1: UE=1

3 Get Discrete Data BOOL 0=low, 1=high RUE N/A
4 Get Analog Data INT 0 to 1023 RUEA N/A

Table 12: SmartMotor I/O, Class 112 decimal, Instance 6 (Pin F)
Attribute

ID
Access

Rule
Name DeviceNet

Data Type
Description of

Attribute
Get Action Set Action

1 Set Function USINT 0=output, 1=input 0: UFO
1: UFI

2 Set Output Latch BOOL 0=low, 1=high 0: UF=0
1: UF=1

3 Get Discrete Data BOOL 0=low, 1=high RUF N/A
4 Get Analog Data INT 0 to 1023 RUFA N/A

Table 13: SmartMotor I/O, Class 112 decimal, Instance 7 (Pin G)
Attribute

ID
Access

Rule Name DeviceNet
Data Type

Description of
Attribute Get Action Set Action

1 Set Function USINT 0=output, 1=input, 3=special
(GO)

 0: UGO
1: UGI
2: UG

2 Set Output Latch BOOL 0=low, 1=high 0: UG=0
1: UG=1

3 Get Discrete Data BOOL 0=low, 1=high RUG N/A
4 Get Analog Data INT 0 to 1023 RUGA N/A

DeviceNet SmartMotorTM Specifications

13

Sample Producing Motion via Explicit Messaging

Table 14: Velocity Mode – The following sequence of commands will result is velocity mode motion

Action Class Instance Attribute Name Decimal

Value
Hex Value

(Lo byte–>Hi
byte)

Description

SET 37 01 03 Mode 1 0x01 velocity mode
SET 37 01 08 Acceleration 25263 0xAF620000 A=100 (scaled

25263)
SET 37 01 07 Velocity 31044 0x44790000 V=500000 (scaled

31044)
SET 37 01 11 Load Data 1 0x01 load data and

execute

Table 15: Torque Mode – The following sequence of commands will result is torque mode motion

Action Class Instance Attribute Name Decimal

Value
Hex Value

(Lo byte–>Hi
byte)

Description

SET 37 01 03 Mode 2 0x02 torque mode
SET 37 01 25 Torque -255 0x00FFFFFF torque=> ¼ Full

CCW
SET 37 01 17 Enable 1 0x01 motor power

enabled
SET 37 01 11 Load Data 1 0x01 load data and

execute
SET 37 01 11 Load Data 0 0x00 load data clear
GET 37 01 23 Instantaneous

Direction
00 0x00 reverse direction

SET 37 01 25 Torque 512 0x00020000 torque=> ½ Full CW
GET 37 01 23 Instantaneous

Direction
1 0x01 forward direction

DeviceNet SmartMotorTM Specifications

14

Vendor Specific Descriptions

This is a list of Animatics-specific descriptions of attributes. Descriptions with more elaboration than the Object
Class, Instance, and Attribute List Appendix are included for those attributes whose behavior has a vendor-
specific character.

Table 16: POSITION CONTROLLER CLASS 37 DECIMAL

Definition of a Profile Move
A profile move is a move that uses Acceleration and Target Velocity to run at a Target Velocity or to a Target
Position. In addition, the position controller device can output a Torque command. Whether or not the position
controller device runs at a Target Velocity, to a Target Position or outputs a Torque command depends on the
Operation Mode (Position Controller Object Attribute 3), to which the position controller device is set. The position
controller device is set to Position, Velocity or Torque mode using Position Controller Attribute 3 (which can be set
via Command Message type 0x1B).

Starting a Profile Move
The Position Controller Profile is mode-sensitive. The Position Controller Object Attribute 3 sets the mode of the
controller to the following:

0 = Position (default)
1 = Velocity
2 = Torque

A profile move starts when the command message type for the specified mode is loaded and the Load Data/ Start
Profile bit transitions from 0->1. The table below shows the command message type which starts a profile move
for each mode.

Table 17: Start Motion Command Message Type

Mode (Attribute 3) Command Message Type which starts motion
0 = Position 01 = Position
1 = Velocity 02 = Velocity
2 = Torque 05 = Torque

Attribute Name Description
14 Actual Velocity Actual velocity, subject to the granularity one encoder count per

Sample, is reported in Torque mode. In position and velocity modes,
the calculated velocity, which is being enforced by the PID feedback,
is reported. This value is more precise over an aggregate of servo-
Samples.

16 Commanded
Velocity

This attribute has no meaning in torque mode.

17 Enable Value = 0 à 1: permits motion initiation, initiates motion, or initiates
servo in place
Value = 1 à 0: motor is turned OFF, initiation of motion or servo is
not permitted

23 Instantaneous
Direction

Value = 0: reverse or negative or CCW viewed facing shaft
Value = 1: forward or positive or CW viewed facing shaft
Value change: reverses sign on velocity in velocity mode

25 Output Torque Range is –1023 to 1023.
49 Hard Limit Action Values supported are:

0 motor turned OFF on limit crash
2 motor decelerates at value of acceleration on limit crash

100 Current Limit Range is 0 to 1023

DeviceNet SmartMotorTM Specifications

15

Table 18: Command Message Format
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Enable n/a Hard Stop Smooth
Stop

Direction
(V. Mode) Incremental n/a Load Data/

Start Profile
1 Command Data 1
2 Command Axis Number Command Message Type
3 Command Data 2
4 Command Data 3
5 Command Data 4
6 Command Data 5
7 Command Data 6

Table 19 : Response Message Format

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Enable Index
Level n/a Curent

Direction
General

Fault n/a n/a Profile in
Progress

1 Response Data 1

2 Load
Complete n/a FE Fault n/a n/a Rev Limit Fwd Limit n/a

3 Response Axis Number Response Message Type
4 Response Data 2
5 Response Data 3
6 Response Data 4
7 Response Data 5

TROUBLESHOOTING

What could be wrong?

If the DeviceNet network fails to communicate with the motor, please check the following:

 Motor is powered. The motor servo led should be green or red, not off.
 Motor has a user program beginning with the required OCHN command.
 Motor’s network baud rate, held in non-volatile memory, matches the network baud rate.
 Motor’s MACID, held in non-volatile memory, is set correctly.
 DeviceNet network trunk lines, drop lines, and terminators are within specifications.

