
Preliminary

Animatics
SmartMotor™
with DeviceNet
Specifications:

Appendix: Communicating
between the Motor User
Program and DeviceNet

Copyright Animatics 2003

Revision 0 09/18/03 Jason Hyatt
Revision 1 09/25/03 add example Jason Hyatt
Revision 2 09/26/03 Jason Hyatt
Revision 3 10/06/03 corrections Jason Hyatt

THE DIFFERENCE BETWEEN DEVICENET
ATTRIBUTES AND MOTOR SYSTEM VARIABLES

The SmartMotor™ follows the DeviceNet Position Controller Device Profile. The
Device Profile is meant to provide interoperability among position controller motors
regardless of vendor. Not all motors have the features of the SmartMotor™, so many of
the SmartMotor™ features are not accessible through DeviceNet.

Preliminary

Some DeviceNet variables have a Set access, and some Get access. Generally attributes
with Set access may be set in the motor through DeviceNet. If you “Get” a DeviceNet
attribute with Set access, the value returned will be the DeviceNet default value or the
value you “Set” it to in DeviceNet. If you send commands through the serial port, or
commands in the downloaded user program in the motor are executed that change the
value of the motor system variable reflected by the attribute, this will not be reflected
when you “Get” the Set access DeviceNet attribute.

Some DeviceNet variables have Get access. Attributes with Get access may not be set
through DeviceNet. If commands received by the motor through the serial port, or
commands in the downloaded user program in the motor are executed that change the
value of the motor system variable reflected by the attribute, this will be reflected when
you “Get” the Set access DeviceNet attribute.

Preliminary
COMMUNICATING FROM DEVICENET TO THE
USER PROGRAM

The DeviceNet Position Controller Profile does not provide access to the motor user
variables (a through zzz). It does provide Set access to some motor System variables.
The user program may query the value of these System variables. System variables
unneeded for their designated function by your application may be “taken over” to
communicate to the motor’s user program.

DeviceNet Attributes Useful to Communicate TO the User Program

Attribute Size Available if: Motor access

Class Decimal 36, Position Controller Supervisor, Instance 1

27 31 bits Follow with ratio motion mode term MFDIV, eg.
 not used a=MFDIV (number),
 d=MFDIV&&32 (bit)

Class Decimal 37, Position Controller, Instance 1

6 32 bits Absolute Position motion mode term P, eg
 not used a=P

7 32 bits Neither Position nor Velocity term V, eg
 motion modes used a=V

8 32 bits Neither Position nor Velocity term A, eg
 motion modes used a=A
25 11 bits Torque mode not used term T, eg
 a=T

30 1-2 bits application insensitive to KP, term KP
 allowing low-order bits to be
 used

31 1 bit application insensitive to KI, term KI
 allowing low-order bit to be
 used

32 1-4 bits application insensitive to KD, term KD
 allowing low-order bits to be
 used

Preliminary
33 1 bit application insensitive to KL, term KL
 allowing low-order bit to be
 used

35 1-8 bits application insensitive to KV, term KV
 allowing low-order bits to be
 used (Most likely of the Kx to
 affect the application least.)

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin A unused term UAO, eg
 (or consistently used) a=UAO

 Class 112, SmartMotor™ I/O, Instance 2

2 1 bit motor I/O pin B unused term UBO, eg
 (or consistently used) a=UBO

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin C unused term UCO, eg
 (or consistently used) a=UCO

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin D unused term UDO, eg
 (or consistently used) a=UDO

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin E unused term UEO, eg
 (or consistently used) a=UEO

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin F unused term UFO, eg
 (or consistently used) a=UFO

Class 112, SmartMotor™ I/O, Instance 1

2 1 bit motor I/O pin G unused term UGO, eg
 (or consistently used) a=UGO

Notes regarding the above table:

Preliminary

When the buffered tuning parameters KP, KI, KD, KL, or KV, attributes 30, 31, 32, 33,
or 35 are set by DeviceNet, they are also loaded into the filter. The motor F command is
issued by DeviceNet.

Preliminary
COMMUNICATING FROM THE USER PROGRAM
TO DEVICENET

Generally speaking, only the Get Access DeviceNet attributes are updated when the user
program changes the value of the corresponding motor System variable. DeviceNet may
query the value of these attributes. System variables unneeded for their designated
function by your application may be “taken over” to communicate to DeviceNet.

DeviceNet Attributes Useful to Receive Communication FROM the User
Program

Attribute Size Available if: Motor access

Class Decimal 37, Position Controller, Instance 1

30 1-2 bits application insensitive to KP, KP=<expression>
 allowing low-order bits to be
 used

 16 bits application does not dynamically
 change the PID filter (does not
 issue F command)

31 1 bit application insensitive to KI, KI=<expression>
 allowing low-order bit to be
 used

 16 bits application does not dynamically
 change the PID filter (does not
 issue F command)

32 1-4 bits application insensitive to KD, KD=<expression>
 allowing low-order bits to be
 used

 16 bits application does not dynamically
 change the PID filter (does not
 issue F command)

33 1 bit application insensitive to KL, KL=<expression>
 allowing low-order bit to be
 used

Preliminary
 16 bits application does not dynamically
 change the PID filter (does not
 issue F command)

35 1-8 bits application insensitive to KV, KV=<expression>
 allowing low-order bits to be
 used (Most likely of the Kx to
 affect the application least.)

 16 bits application does not dynamically
 change the PID filter (does not
 issue F command)

Class 112, SmartMotor™ I/O, Instance 1

4 1 bit motor I/O pin A unused UAO
 (or consistently used) UAO=<expression>

 Class 112, SmartMotor™ I/O, Instance 2

4 1 bit motor I/O pin B unused UBO
 (or consistently used) UBO=<expression>

Class 112, SmartMotor™ I/O, Instance 1

4 1 bit motor I/O pin C unused UCO
 (or consistently used) UCO=<expression>

Class 112, SmartMotor™ I/O, Instance 1

4 1 bit motor I/O pin D unused UDO
 (or consistently used) UDO=<expression>

Class 112, SmartMotor™ I/O, Instance 1

4 1 bit motor I/O pin E unused UEO
 (or consistently used) UEO=<expression>

Class 112, SmartMotor™ I/O, Instance 1

4 1 bit motor I/O pin F unused UFO
 (or consistently used) UFO=<expression>

Class 112, SmartMotor™ I/O, Instance 1

Preliminary
4 1 bit motor I/O pin G unused UGO
 (or consistently used) UGO=<expression>

Notes regarding the above table:

When the BUFFERED tuning parameters KP, KI, KD, KL, or KV, corresponding to
DeviceNet attributes 30, 31, 32, 33, or 35, are set by the motor user program, THEY ARE
NOT LOADED INTO THE PID FILTER, so long as the motor F command is not issued.
This allows them to be safely used to transmit information to DeviceNet, so long as
DeviceNet only GETs the attributes and never SETs them. This is because if they are
SET by DeviceNet, DeviceNet will also cause the F command to be issued, loading the
values into the motor.

When reading the values of the output pins, attribute 4 is used to read the output value on
the pin, as set by the motor user program. This is an analog value that ranges from 0 to
1023. If the value is approximately 0, the digital pin value is 0. It the value is
approximately 1023, the digital pin value is 1.
Attribute ID 3, Get Digital Input, for Motor DeviceNet version 1.05 and below, is only
supported in motors with 4.76 and 4.77 firmware. For these motors, attribute 3 may be
used.

ACCESSING DEVICENET ATTRIBUTES

All the attributes may be accessed through DeviceNet Explicit Messaging, as one shot
messages, using the GET ATTRIBUTE or the SET ATTRIBUTE service, using the
functions provided by your DeviceNet Master.

Attributes in the two classes Position Controller Supervisor Class, Decimal 36, and
Position Controller Class, Decimal 37, may be accessed through DeviceNet I/O Polling
Messaging, as continuously resent messages, using the handshaking protocol in bit 0 of
byte 0 of the command message. Command message types hex 1A and hex 1B may be
used to access the class attributes. This is explained in the manual and other appendices.

Preliminary
EXAMPLE

Send 4 bit BCD value to motor user program over DeviceNet
Get 3 bit BCD value from user program over DeviceNet

In this example, Mode Follow motion mode is not being used, so the following ratio
divisor, motor variable MFDIV, which is DeviceNet attribute 27 decimal of the object
Position Controller Supervisor, class 36 decimal, instance 1, is used to send data to the
user program.

Since the PID tuning parameter KV is the least sensitive tuning parameter, and is seldom
required, KV is selected to receive information from the motor user program, which is
attribute 35 decimal of the object Position Controller, class 37, instance 1. In this
example it is assumed KV is not being used simultaneously for tuning. That is, KV is
never Set by DeviceNet, but DeviceNet only Gets KV, so DeviceNet is not causing an F
to be issued, and the user program is not issuing an F command. Since the F command is
never issued, the buffered KV value is never loaded into the filter.

In the PC or PLC

DEVICENET EXPLICIT MESSAGING

In the PLC or PC, using the appropriate DeviceNet master registers or functions, Explicit
Messages are sent to Set class 36, instance 1, attribute 27, or Get class 37, instance 1,
attribute 35.

Class 36, instance 1, attribute 27 is set to a value from 0 to 15, a value from 0 to 8 is
retrieved from Class 37, instance 1, attribute 35.

DEVICENET I/O POLLING MESSAGING

In this example illustrating I/O Polling Messages, the value sent will be 6, and the value
retrieved 5. Please refer to other sections for detailed explanations and examples of I/O
Polling Messaging and handshaking.

I/O Polling Command Message Setup in PLC registers to SET MFDIV (data not loaded)
to send MFDIV to the motor

Byte Value Meaning
0 x80 enable motor to have power to coils (don’t disable)
 bit 0 is 0 to allow the 0 to 1 handshake transition to load data
1 x1B optionally Get same attribute as Set from class 36 decimal
2 x1A Message Type to access Position Controller Supervisor, class 36
3 x1B Set attribute 27 decimal

Preliminary
4 x06 low order data byte, value is 6
5 x00 second data byte 0
6 x00 third data byte 0
7 x00 high order data byte, 0

I/O Polling Response Message

Not Shown

I/O Polling Command Message Handshake in PLC registers SET MFDIV (loading
data) to send MFDIV to the motor

Byte Value Meaning
0 x81 add load data bit, data is loaded
1 x1B Get same attribute SET in class 36 decimal
2 x1A Message Type to access Position Controller Supervisor, class 36
3 x1B Set attribute 27 decimal, Following Divisor (MFDIV in the motor)
4 x06 low order data byte SET in DeviceNet and
 sent to motor, value is 6
5 x00 second data byte sent to motor
6 x00 third data byte sent to motor
7 x00 high order data byte sent to motor

I/O Polling Response Message

Byte Value Meaning
0 x80
1 x1A no attribute to Get
2 x8? bit 7 set, data SET in DeviceNet
3 x1A Response Message Type to access Position Controller Supervisor,
 class 36
4 x06 low order data byte returned from DeviceNet, value is 6
5 x00 second data byte returned from motor
6 x00 third data byte returned from motor
7 x00 high order data byte returned from motor
Not Shown

I/O Polling Command Message Setup in PLC registers Get KV (not yet receiving data)

Byte Value Meaning
0 x80 bit 0 is 0 to set up to allow the 0 to 1 handshake transition to load
 data

Preliminary
1 x23 Get attribute 35 decimal from class 37
2 x1B Message Type to access Position Controller, class 37
3 x00 no attribute to Set
4 x06 low order data byte, left over from prior message, unused
5 x00 second data byte, unused
6 x00 third data byte, unused
7 x00 high order data byte, unused

I/O Polling Response Message

Not Shown

I/O Polling Command Message Handshake in PLC registers Get KV (receiving data)

Byte Value Meaning
0 x81 add load data bit, command complete to act upon
1 x23 Get attribute 35 decimal from class 37
2 x1B Message Type to access Position Controller, class 37
3 x00 no attribute to Set
4 x00 low order data byte, unused
5 x00 second data byte, unused
6 x00 third data byte, unused
7 x00 high order data byte, unused

I/O Polling Response Message returns value of KV

Byte Value Meaning
0 x80
1 x23 attribute to Get
2 x?? various status
3 x1B Response Message Type to access Position Controller, class 37
4 x05 low order data byte returned from motor, value 5
5 x00 second data byte returned from motor
6 x00 third data byte returned from motor
7 x00 high order data byte returned from motor

In the Motor User Program

RECEIVING THE VALUE FROM THE DEVICENET MASTER

Motor variable MFDIV will contain the value being sent by the DeviceNet master
received by the motor. If the four bits are meant to be four Booleans, the motor program
could be written several ways:

Preliminary

 x=MFDIV ‘ capture MFDIV if all bits need to be coherent with each
 ‘ other during a cycle of processing in the program
 IF x&1 <commands to execute if bit 0 is 1> ENDIF
 IF x&2 <commands to execute if bit 1 is 1> ENDIF
 IF x&4 <commands to execute if bit 2 is 1> ENDIF
 IF x&8 <commands to execute if bit 3 is 1> ENDIF

or, if it was desired to place the binary value of each bit in four separate variables, j, k, l,
and m, to be logically treated as Booleans with only values 0 or non-zero:

 x=MFDIV ‘ capture MFDIV if all bits need to be coherent with each
 ‘ other during a cycle of processing in the program
 j=x&1 ‘ set j to 0 or 1 if bit 0 is 1
 k=x&2 ‘ set k to 0 or 2 if bit 1 is 1
 l=x&4 ‘ set l to 0 or 4 if bit 2 is 1
 m=x&8 ‘ set m to 0 or 8 if bit 3 is 1

or, if it was desired to place the binary value of each bit in four separate variables, j, k, l,
and m, to be logically treated as Booleans with only values 0 or 1:

 x=MFDIV ‘ capture MFDIV if all bits need to be coherent with each
 ‘ other during a cycle of processing in the program
 j=x&1 ‘ set j to 0 or 1 if bit 0 is 1
 k=x&2 ‘ set k to 0 or 2 if bit 1 is 1
 k=k==2 ‘ set k to 0 or 1 if k is equal to 2
 l=x&4 ‘ set l to 0 or 4 if bit 2 is 1
 l=l==4 ‘ set l to 0 or 1 if l is equal to 4
 m=x&8 ‘ set m to 0 or 8 if bit 3 is 1
 m=m==8 ‘ set m to 0 or 1 if m is equal to 8

SENDING THE VALUE TO THE DEVICENET MASTER

Motor variable buffered KV is used to send the three bit value to the DeviceNet master.

If we suppose that variables p, q, and r govern respectively bits 0, 1, and 2 of the value of
KV, we might use motor code:

 y=0 ‘ zero shadow register used if all bits need to be coherent with one
 ‘ another when sent to the master
 IF p y=y|1 ENDIF ‘ set bit 0 in y if p
 IF q y=y|2 ENDIF ‘ set bit 1 in y if q

Preliminary
 IF r y=y|4 ENDIF ‘ set bit 2 in y if r
 KV=y

or, if p, q, and r only have values 0 or, respectively, 1, 2, and 4:

 y=0 ‘ zero shadow register used if all bits need to be coherent with one
 ‘ another when sent to the master
 y=y|p ‘ set bit 0 in y if p (since p is only 0 or 1)
 y=y|q ‘ set bit 1 in y if q (since q is only 0 or 2)
 y=y|r ‘ set bit 2 in y if r (since r is only 0 or 4)
 KV=y

or, if p, q, and r all have values 0 or 1:

 y=0 ‘ zero shadow register used if all bits need to be coherent with one
 ‘ another when sent to the master
 y=y|p ‘ set bit 0 in y if p (since p is only 0 or 1)
 z=q*2 ‘ value of q in bit 1 of z (since q is only 0 or 1)
 y=y|z ‘ set bit 1 in y if q
 z=r*4 ‘ value of r in bit 2 of z (since r is only 0 or 1)
 y=y|z ‘ set bit 2 in y if r
 KV=y

