
The

Series 4

Revision 5

User's Guide

2

©2001, 2002, 2003, 2004, 2005, 2007, 2008 Animatics Corp.
All rights reserved

Animatics SmartMotor™ Series 4 User's Guide, Revision 5.

This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of
such license. The content of this manual is furnished for informational
use only, is subject to change without notice and should not be construed
as a commitment by Animatics Corporation. Animatics Corporation
assumes no responsibility or liability for any errors or inaccuracies that
may appear herein.

Except as permitted by such license, no part of this publication may be
reproduced, stored in a retrieval system or transmitted, in any form or by
any means, electronic, mechanical, recording, or otherwise, without the
prior written permission of Animatics Corporation.

Animatics, the Animatics logo, SmartMotor and the SmartMotor logo
are all trademarks of Animatics Corporation. Windows, Windows 95/98,
Windows 2000, Windows NT and XP are all trademarks of Microsoft
Corporation.

Please let us know if you find any erorrs or omissions in this manual
so that we can improve it for future readers. Such notifications should
be sent by e-mail with the words "User's Guide" in the subject line
sent to: techwriter@animatics.com. Thank you in advance for your
contribution.

Contact Us:

Animatics Corporation
3200 Patrick Henry Drive
Santa Clara, CA 95054
USA
Tel: 1 (408) 748-8721
Fax: 1 (408) 748-8725
www.animatics.com

Animatics’ SmartMotor is patented by US Patent # 5,912,541.

Animatics is Defining the Future in Motion Control!

3

SMARTMOTOR THEORY OF OPERATION 7
 Motion Control Functions 7

 System Control Functions 7

 Communication Functions 8

 I/O Functions 8

QUICK START 9
 Software Installation 10

 SmartMotor Background 10

 A quick look at the SmartMotor Interface 11

PROGRAMMING TABLE OF CONTENTS 17
 Creating Motion 21

 Program Flow 31

 Variables 39

 Reporting Commands 43

 Encoder and Pulse Train Following 47

 System State Flags 55

 Inputs and Outputs 57

 Communications 69

 The PID Filter 79

SMI ADVANCED FUNCTIONS 85
 SMI Software 85

 SMI Projects 85

 Terminal Window 85

 Configuration Window 86

 Program Editor 86

 Information Window 87

 Serial Data Analyzer 87

 Motor View 88

TABLE OF CONTENTS

4

 Monitor Window 88

 Chart View 89

 Macros 89

 Tuner 90

 SMI Options 92

 SMI Help 92

APPENDIX A 95
 ASCII Character Set 95

APPENDIX B 97
 Binary Data 97

APPENDIX C 101
 Commands 101

APPENDIX D 111
 Data Variables Memory Map 111

APPENDIX E 113
 Example Programs 113
 Moving back and forth 113
 Moving back and forth with watch 113
 Homing against a hard stop 114
 Homing to the index 114
 Analog Velocity 115
 Long term variable storage 116
 Look for errors and print them 116
 Changing speed upon digital input 116
 Pulse output upon a given position 117

TABLE OF CONTENTS

Continued from preceding page

5

 Stop motion if voltage drops 117
 Measuring command execution time 118
 Custom parser with checksum 119

APPENDIX F 125
 F= Commands 125

TABLE OF CONTENTS

6

This page has been intentionally left blank.

7

SMARTMOTOR THEORY OF OPERATION

Optional
SmartMotor™ cable
(CBLSM1-10)

Optional PS24V8A or
PS48V6A power
supply

Many vertical
applications require
a SHUNT to protect
the SmartMotor
from damage

The SmartMotor is an entire servo control system built inside of a servo motor.
It includes a controller, an amplifier and an encoder. All that is required for it
to operate is power, and either an internal program, or serial commands from
outside (or both). To make the SmartMotor move, the program or serial host
must state a target position, a maximum velocity at which to travel to that
target, and a maximum acceleration. Once these three parameters are set, a
"Go" signal, or statement will start the motion profile.

Motion Control Functions

The controller portion of the SmartMotor performs many functions. When the
motor is set to "servo" (hold its position), its windings are charged with
current only so much as is necessary to keep the programmed position, either
at rest, or over time during motion. This power level is controlled by the
"PID filter" and updated more than 4,000 times per second for maximum
performance.

Trajectory generation is also done by the controller, to exacting precision.
Position, Velocity and Acceleration can be changed at any time, even during
an existing move. To reach a target position, the SmartMotor will accelerate
at the programmed acceleration until it reaches the programmed maximum
velocity, whereupon it will travel at that velocity. When it approaches the
target position, it will decelerate at the last programmed "acceleration" rate
such that the moment it comes to rest, it will be at the programmed target
position. The PID filter will direct the amplifier to give the motor as much
current as required to stay on the trajectory, based on loading. If there is
not enough power to move the load and stay on trajectory, there will be a
Position Error and the motor will stop, unless programmed otherwise. The
amount of power the SmartMotor requires is entirely dependent upon the
load it must move.

In addition to the ability to create trajectories, the SmartMotor can position
in ratio to incoming encoder or step & Direction signals, it can interpolate
its position between points in a CAM table, and it can perform complex
contours when coordinated by a host computer with custom software, or
one of Animatics standard software programs, including SMNC, CNC control
software.

PID control, and trajectory generation (or following) are the controller's top
priority. Regardless of what else may be processing, or happening, these
functions will be performed at the full and precise PID rate.

System Control Functions

The SmartMotor's controller can also be programmed in a language similar to
BASIC. This capability creates infinite flexibility and in many applications, can
eliminate the need for a PLC (Programmable Logic Controller).

SmartMotors have numerous I/O incorporating multiple functions. Clever

8

programs can define interactions between the I/O, the SmartMotor's shaft
motion and also other peripherals like Sensors, Light Curtains, Bar Code
Readers, etc., even other SmartMotors.

Communication Functions

SmartMotors come standard with RS-232 and/or RS-485 communication
ports. These ports can be used to connect SmartMotors together, and/or
to a host computer or PLC. In addition to these networks, SmartMotors
are also available with a number of industry standard control networks such
as CANopen, DeviceNET, Profibus, USB, Ethernet, Ethernet/IP, and others.
These other networks can be used for communication between SmartMotors,
between a group of SmartMotors and a host, and in many instances allow a
SmartMotor to master out to network based I/O expansion modules.

Each industrial network imposes standards for operation and the SmartMotors
are designed to conform to those particular standards, where industrial
fieldbusses are used.

For communication over the SmartMotor's native RS-232 or RS-485 ports,
several hundred unique commands are interpreted from incoming ASCII text
at a default 9,600 baud. There is no hardware or software handshaking.
Commands are simply buffered and interpreted as they come in. Requests
can be made of the SmartMotor for data or system status as needed. The
commands used in an internal program are the same as those interpreted
over the serial channels, except that the program has additional commands
for decision making and program flow.

Commands arriving over the serial channels have priority over internal
program commands. As a command comes in over the serial channel, it is
serviced "next" and then execution is returned to the SmartMotor's program,
if it exists and is running. If a request is made for data, such as a request for
position: "RP", for example, the current position is output in the form of ASCII
text to the main channel, regardless of whether the request was made over
the main channel serial network, or by internal program. If a request for data
arrives from the secondary serial channel, or other serial network, however,
the data is reported to that channel. The SmartMotor uses both Spaces and
Carriage Returns as delimiters.

I/O Functions

The SmartMotor's I/O (Input/Output) ports are extremely flexible and provide
a variety of Digital and Analog Input and Output capability. Each I/O point
has a corresponding pre-assigned variable name within the programming
environment and can be read from, or written to by placing it on the right, or
left side of an equation, respectively.

9

In order to make the SmartMotor run, the following will be needed at a
minimum:

1. A SmartMotor™

2. A computer running MS Windows 95/98, 2000, NT or XP

3. A DC power supply for those SmartMotors that requre DC voltage.

4. A data cable to connect the SmartMotor to the computer's serial p o r t
or serial adapter.

5. Host level software to communicate with the SmartMotor

The fi rst time user of the SM1700 through SM3400 series motors should
purchase the Animatics SMDEVPACK. It includes the CBLSM1-10 data and
power cable, the SMI software, the manual and a connector kit.

The CBLSM1-10 cable (right) is
also available separately.

Animatics also has the following DC
power supplies available for Series
4 SmartMotors: PS24V8A (24 Volt,
8 Amp) and PS42V6A (42 Volt,
6 Amp). ServoStep SmartMotors
operate up to 75VDC. They can
use any of the power supplies, plus
higher voltage supplies. For any
particualr motor, more Torque and
Speed is available with higher voltage.

When relying on Torque/Speed curves, pay
close attention to the voltage on which they
are based. Also, special care must be taken
when near the upper voltage limit or in
vertical applications that can back-drive the
SmartMotor. Gravity infl uenced applications
can turn the SmartMotor into a generator and
back-drive the power supply voltage above the
safe limit for the SmartMotor. Many vertical

applications require a SHUNT to protect the SmartMotor from damage. Larger
open frame power supplies are also available and may be more suitable for
cabinet mounting.

For the AC SmartMotors, SM4200 through SM5600 series, Animatics offers:

CBLSMA1-10 10' communication cable

CBLAC110-10 10' 110 volt AC single phase power cord

CBLAC200-10 10' 208-230 volt AC 3 phase power cord

QUICK START

Optional
SmartMotor™ cable
(CBLSM1-10)

Combo-D-Sub

to SmartMotorTM

Power for

SmartMotorTM

RS232 to Computer

Optional PS24V8A or
PS48V6A power
supply

Many vertical
applications require
a SHUNT to protect
the SmartMotor
from damage

10

SOFTWARE INSTALLATION
Follow standard procedures for software installation using either the Animatics
SMI CD-ROM or fi les downloaded from the Animatics Website at
www.animatics.com.
After the software is installed, be sure to reset your computer before running the
SMI program.
With the SMI Software loaded and your SmartMotor connected as shown above,
you are ready to start making motion. Turn the SmartMotor's power on and start
the SMI Program.

SMARTMOTOR BACKGROUND
The SmartMotor is an entire Servo Control System in a single component. Of
course, it's shaft position, velocity and acceleration are programmable but there
is much more. The SmartMotor also has analog and digial I/O and can be pro-
grammed to operate by itself in a language similar to Basic. The same com-
mands one would use to program a SmartMotor can be sent to it over RS-232,
or RS-485, depending on your product selection. These commands, explained
later in this guide, can be sent using most any host terminal software, but the
SMI "SmartMotor Interface" program does this and much more.

QUICK START

Connecting a
SM2320D
SmartMotor using
a CBLSM1-10
cable assembly
and PS24V8A
power supply

11

A QUICK LOOK AT THE SMARTMOTOR INTERFACE
The SMI software connects a SmartMotor, or a series of SmartMotors to a com-
puter or workstation and gives a user the capability to control and monitor the
status of the motors directly from a standard computer. SMI also allows the user
the ability to write programs and download them into the SmartMotor’s long-
term memory.

For the benefi t of the fi rst-time user, the SMI software starts with the
"SmartMotor Playground". If you are using a ServoStep or other RS-485
based SmartMotor, start by clicking on the "Confi gure Port" button and select
"RS-485".

Now, click in the "Detect Motors" button in the upper-right. If your SmartMotor is
not properly detected, use the utility to the upper left to select the more appropri-
ate COM port. If you still have no success, it is likely that your computer is not
confi gured properly for RS-232 communications. This problem should be cor-

rected, or another computer substitued.

Within the SmartMotor Playground, you can experiment with the many different
modes of operation. You might start by moving the position slider bar to the right
and watching the motor follow. By selecting the "Terminal" tab, you can try dif-
ferent commands found later in this guide.

While SmartMotor Playground is useful in testing the motor and learning about
its capabilities, to develop an actual application, you will need to click on the

Every SmartMotor
has an ASCII
interpreter built in. It
is not necessary to
use SMI to operate
a SmartMotor.

QUICK START

The SmartMotor
Playground allows
the user to
immediately begin
making motion
without having to
know anything
about the
programming.

If you are using
a SmartMotor with
PLUS fi rmware or a
ServoStep, you may
need to check the
"Disable Hardware
Limits" boxes and
clear the error fl ags
to get motion. DO
NOT disable limits
if this action
creates a hazzard.

12

"Close" button at the bottom and launch the SMI development software.

LEARING THE SMARTMOTOR INTERFACE (SMI)
The SMI main screen shows a menu section accross the top, a Configuration
Window on the left, an Information Window and a Terminal Window in the
center colored blue.

With your motor connected and on, click on the purple located mid way on
the toolbar. If everything is connected and working properly, the motor should
be identified in the Information Window. If the motor is not found, check your
connections and make sure the serial port on your PC is operational.

Monitoring motor
status
To see the status of
the connected motor,
go to the "Tools" menu,
select "Motor View"
and double click on
the available motor.
Once the MotorView
box appears, press the
"Poll" button.

SmartMotors with PLUS
Firmware and Servo-
Step require limits to be
connected before the
motor will operate. If
you see limit errors, and
you want to move the
motor anyway, you don't
have to install limits.
Instead, you can rede-
fine the Limit Inputs as
General Inputs, and reset the errors by issuing the following commands (in
bold) in the Terminal Window (be sure to use all caps and don't enter the com-
ments).

 UCI ‘Confi gure Port C (limit) as general input
 UDI ‘Confi gure Port D (limit) as general input
 ZS ‘Reset errors

Normally, when the motor is attached to an application that relies on proper limit
operation, you would not make a habbit of disabling them. If your motors are
connected to an application and capable of causing damage or injury, it would
be essential to properly install the limits before experimenting.

MotorView gives
you a window into
the status of a
SmartMotor

QUICK START

Acceleration,
Velocity and
Position fully
describe a
trapezoidal motion
profi le

PLUS and
ServoStep
Firmware require
the Limit Inputs to
be either tied low, or
disabled to achieve
motion.

13

Initiating motion
To get the motor to make a trajectory, enter the following into the Terminal.

 A=100 ‘sets the Acceleration
 V=1000000 ‘sets the maximum Velocity
 P=300000 ‘sets the target Absolute Position
 G ‘Go, initiates motor movement

After the fi nal G command has been entered, the SmartMotor will accelerate
up to speed, slew and then decelerate to a stop at the absolute target position.
The progress can be seen in the MotorView.

Writing a user program
In addition to taking commands over the serial interface, SmartMotors can run
programs. To begin writing a program, press the button on the left end of the
toolbar and the SMI program editing window will open. This window is where
SmartMotor programs are entered and edited.

Enter the following program in the editing window. It’s only necessary to enter
the boldface text. If you have no limits connected, you may need to add the
Limit redefi nition code used in the previous exercise to the top of the program.
The text preceded by a single quote is a comment and is for information only.
Comments and other text to the right of the single quotation mark do not get
sent to the motor. Pay close attention to spaces and capitalization. The code
is case sensitive and a space is a programming element:

 A=100 ‘Set buffered acceleration
 V=1000000 ‘Set buffered velocity
 P=300000 ‘Set buffered relative move
 G ‘Start Motion
 TWAIT ‘Wait for move to complete
 P=0 ‘Set buffered move back to home
 G ‘Start Motion
 END ‘End program

After the program has been entered, select File from the menu bar and
Save as . . . from the drop down menu. In the Save File As window give the
new program a name such as “Test.sms” and click on the Save button.

Transmitting the program to a SmartMotor
Before transmitting the program, press the STOP button in the MotorView
window. To check the program and transmit it to the SmartMotor, click on the

 button located on the tool bar. A small window will ask what motor you want
to download to. Simply select the only motor presented. SMI2 compiles the
program during this step as well, so if errors may be found in the fi le. If errors
are found, make the necessary corrections and try again.

1000000 Scaled
Counts/Sample=
about 1860 RPM
for SM2300 series
motors, about 930
RPM for series
SM3400, 4200 and
5600 motors, and
about 465 RPM for
ServoStep motors.

The larger
SmartMotors
can shake and
move suddenly
and should be
restrained for
safety.

QUICK START

14

Finally, you will be presented with options relating to runing the program. Simply
select Run. If the motor makes only one move, that is probably because it was
already at position 300000. Press the RUN () button on the toolbar and the
motor should make both moves.

Since the program ends before the return move is fi nished, you can try running
the program during a return move and learn a bit about how programs and
motion work within the SmartMotor.

To better see the motion the new program is producing, press the Poll button in
the MotorView window and run the program.

With the program now downloaded into the SmartMotor, it is important to note
that it will remain until replaced. This program will execute every time power is
applied to the motor. To get the program to operate continuously, you will need
to write a "loop", described later on.

A program cannot be "erased"; it can only be
replaced. To effectively replace a program
with nothing, download a program with only
one command: END.

Looking at the Position Error and feeling the
motor shaft will show that the motion, so far, is
a bit sloppy. That is because the motor's PID
Filter is tuned by default to be stable in almost

any start-up environment. Try issuing the following commands in the Terminal
and run the program again:

 KP=200 ‘Increase Proportional Gain (P) (Stiffness)
 KD=600 ‘Increase Derivative Gain (D) (Dampening)
 F ‘Update PID Filter

The motor shaft position should feel and appear much stiffer now. More can be
done, however, to make the shaft settle faster and be more accurate. Issue the
following commands to increase what is called
the "Integral Gain":

 KI=100 ‘Increase Integral
Gain (I)
 KL=100 ‘Increase I Limit
 F ‘Update PID filter

Tuning the Motor
Most SmartMotors
show more than
adequate
performance with
the same tuning
parameters. This is
largely due to the
all-digital design.

QUICK START

Refer to the section
on the PID fi lter for
more information on
Tuning.

SMI2 transmits the
compiled version of
the program to the
SmartMotor.

15

By running the program with the MotorView on, you will see improved results.
Note the lower Position Error. For most applications, these parameters will suf-
fi ce, but if still greater precision is required, more can be found on the topic of
tuning later in this manual in the section on tuning. Also, the Tools menu has
a Tuning utility that can be further useful. Whether you accept the preceding
values, or you come up with different ones on your own, you should consider
putting the preceding commands at the top of your program, with the F com-
mand to put them to work. Alternatively, if you are operating a system with no
programs in the motors, be sure to send the commands promptly after power-up
or reset.

Many are surpised at the vast array of different paramters the SmartMotor
fi nds stable. SmartMotors are so much more forgiving than traditional controls
because of their all-digital design. While traditional controls also boast very fast
PID rates, the conventional analog input servo amplifi er has several calculations
worth of delay in the analog signaling, making them diffi cult to tune. By virtue
of it's all-inclusive design, the SmartMotor requires no analog circuitry or asso-
ciated noise immunity circuitry, and so the amplifi er portion conveys all of the
responsiveness the controller can deliver.

QUICK START

16

This page has been intentionally left blank.

17

CREATING MOTION 21

 A=exp Set absolute acceleration 21

 V-exp Set maximum permitted velocity 22

 P=exp Set absolute position for move 22

 D=exp Set relative distance for position move 22

 G Go, start motion 23

 S Abruptly stop motion in progress 23

 X Decelerate to stop 23

 O=exp Set/reset origin to any position 23

 OFF Turn motor servo off 23

 MP Position mode 24

 MV Velocity mode 24

 MT Torque mode 24

 T=exp Set torque value 25

 MD Contouring mode 25

 MD50 Drive Mode 29

 BRK... Brake Commands 29

 MTC, G, I Re-route brake signal 30

 MTB Mode Torque Brake 30

PROGRAM FLOW 31

 RUN Execute stored user program 31

 RUN? Halt program if no RUN issued 31

 GOTO# Redirect program flow 31

 C# Subroutine label 31

 END End program execution 32

 GOSUB# Execute a subroutine 32

 RETURN Return from subroutine 32

 F=32, F=64 Interrupt subroutines 33

 IF, ENDIF Conditional test 34

 ELSE, ELSEIF Conditional alternate test 34

PROGRAMMING TABLE OF CONTENTS

 WHILE, LOOP Conditional loop 35

 SWITCH, CASE, DEFAULT, BREAK, ENDS 36

 TWAIT Wait during trajectory 37

 WAIT=exp Wait (exp) sample periods 37

 STACK Reset the GOSUB return stack 37

VARIABLES 39

 Arrays 39

 Storage of Variables 41

 EPTR=exp Set EEPROM pointer 41

 VST(var,index) Store variables 41

 VLD(var,index) Load variables 41

 Fixed or Pre-assigned variables 41

 Variable Space Restrictions 42

REPORTING COMMANDS 42

 Report to Host Commands 42

ENCODER AND PULSE TRAIN FOLLOWING 47
 MF1, MF2, MF4 Mode Follow 47

 MF0, MS0 47

 MFDIV=exp Set Ratio divisor 47

 MFMUL=exp Set Ratio multiplier 47

 MFR Calculate Mode Follow Ratio 48

 MSR Calculate Mode Step Ratio 48

 MC Mode Cam 48

 BASE=exp Base Length 48

 SIZE=exp Number of Cam Data Entries 48

 CI Cam Initialize 49

 CX Value of Current Cam Index 49

 F=16 Cam Relative Position Mode 49

 F=128 Cam Modulo 51

PROGRAMMING TABLE OF CONTENTS

18

 ENC0, ENC1 Encoder Select 53

SYSTEM STATE FLAGS 55

 Reset System State Flags 56

INPUTS AND OUTPUTS 57
 The Main RS-232 port 58

 The G port 58

 Counter Functions of ports A and B 59

 General I/O functions of ports A and B 59

 The AnaLink port (using I2C protocol) 60

 The AnaLink port (using RS-485 protocol) 60

 The AnaLink port as general I/O 60

 External RS-485 I/O 61

 AnaLink I/O modules 62

 I/O Connection Examles 63

 Motor Connector Pin Identifications 64

 Motor Connector Locator 65

 Standard I/O Modules 66

 Interfacing Standard I/O Modules 67

COMMUNICATIONS 69

 Daisy Chaining RS-232 70

 SADDR# Set motor to new address 07

 SLEEP, SLEEP1 Assert sleep mode 71

 WAKE, WAKE1 De-assert SLEEP 71

 ECHO, ECHO1 Echo input 71

 ECHO_OFF, ECHO_OFF1 De-assert ECHO 71

 Communicating over RS-485 72

 OCHN 73

 CCHN(type,channel) Close a COM channel 74

 BAUD# Set Baud rate of main port 74

PROGRAMMING TABLE OF CONTENTS

19

20

 PRINT(), PRINT1() 74

 SILENT, SILENT1 Assert silent mode 74

 TALK, TALK1 De-assert silent mode 74

 ! Wait for RS-232 char. to be received 75

 a=CHN0, a=CHN1 RS-485 COM error flags 75

 a=ADDR Motor’s self address 75

 Getting data from a COM port 76

THE PID FILTER 79

 PID Filter Control 79

 Tuning the Filter 80

CURRENT LIMIT CONTROL 83

21

Enter the commands below in the SmartMotor Terminal window, following
each command with a return, and the SmartMotor will start to move. Note
that the ServoStep will make a series of minute motions upon power-up
to calibrate the rotor position. This may take about a second and will be
confined to a few degrees of motion. When this is complete the following
commands can be issues:

 Commands Comments

 UCI ‘Dis. Limit (required w/Plus Firm.)
 UDI ‘Dis. Limit (required w/Plus Firm.)
 ZS ‘Reset Errs (required w/Plus Firm.)
 A=100 ‘Set Maximum Acceleration
 V=1000000 ‘Set Maximum Velocity
 P=1000000 ‘Set Absolute Position
 G ‘Start move (Go)

On power-up the motor defaults to position mode. Once Acceleration
(A) and Velocity (V) are set, simply issue new Position (P) commands,
followed by a G (Go) command to execute moves to new absolute locations.
The motor does not instantly go to the programmed position, but follows a
trajectory to get there. The trajectory is bound by the maximum Velocity
and Acceleration parameters. The result is a trapezoidal velocity profile, or a
triangular profile if the maximum velocity is never met.

Position, Velocity and Acceleration can be changed at any time during
or between moves. The new parameters will only apply when a new G
command is sent.

All SmartMotor commands are grouped by function, with the following
notations:

 # Integer number

 exp Expression or signed integer

 var Variable

 COM Communication channel

A=exp Set absolute acceleration

Acceleration must be a positive integer within the range of 0 to 2,147,483,648.
The default is zero forcing something to be entered to get motion. A typical
value is 100. If left unchanged, while the motor is moving, this value will not
only determine acceleration but also deceleration which will form a triangular
or trapezoidal velocity motion profile. This value can be changed at any
time. The value set does not get acted upon until the next G command
is executed.

If the motor has a 2000 count encoder (sizes 17 and 23), multiply the desired

CREATING MOTION

A complete move
requires the user
to set a Position,
a Velocity and an
Acceleration,
followed by a Go.

For SM17 & SM23
A=rev/sec2 * 7.91

For SM34, 42 & 56
A=rev/sec2 * 15.82

For ServoStep
A=rev/sec2 * 31.64

PLUS and
ServoStep
Firmware requires
the added
overhead of
disabling limits (if
none are
connected) and
clearing errors
before a G can be
accepted.

Do not disable
limits if such a
thing could cause
damge or injury.

acceleration, in rev/sec2, by 7.91 to arrive at the number to set A to. With a
4000 count encoder (sizes 34, 42 and 56) the multiplier is 15.82. ServoSteps
use 8000 count encoders, so for them the multiplier is 21.62. These
constants are a function of the motors PID rate. If the PID rate is lowered,
these constants must be raised proportionally.

V=exp Set maximum permitted velocity

Use the V command to set a limit on the velocity the motor can accelerate
to. That limit becomes the slew rate for all trajectory based motion whether in
position mode or velocity mode. The value defaults to zero so it must be set
before any motion can take place. The new value does not take effect until
the next G command is issued. If the motor has a 2000 count encoder (sizes
17 and 23), multiply the desired velocity in rev/sec by 32212 to arrive at the
number to set V to. With a 4000 count encoder (sizes 34, 42 & 56) the
multiplier is 64424. ServoSteps use 8000 count encoders, so for them the
multiplier is 128848. These constants are a function of the motors PID rate.
If the PID rate is lowered, these constants will need to be raised.

P=exp Set absolute position for move

The P= command sets an absolute end position. The units are encoder counts
and can be positive or negative. The end position can be set or changed at
any time during or at the end of previous moves. SmartMotor sizes 17 and 23
resolve 2000 increments per revolution while SmartMotor sizes 34, 42 and 56
resolve 4000 increments per revolution.

The following program illustrates how variables can be used to set motion
values to real-world units and have the working values scaled for motor units
for a size 17 or 23 SmartMotor.

 a=100 ‘Acceleration in rev/sec*sec
 v=1 ‘Velocity in rev/sec
 p=100 ‘Position in revs
 GOSUB10 ‘Initiate motion
 END ‘End program
 C10 ‘Motion routine
 A=a*8 ‘Set Acceleration
 V=v*32212 ‘Set Velocity
 P=p*2000 ‘Set Position
 G ‘Start move
 RETURN ‘Return to call

D=exp Set relative distance for position move

The D= command allows a relative distance to be specified, instead of an
absolute position. The number following is encoder counts and can be
positive or negative.

CREATING MOTION

22

For SM17 & SM23
V=rev/sec * 32212

For SM34, 42 & 56
V=rev/sec * 64424

For ServoStep
V=rev/sec * 128848

For SM17 & SM23
P=rev * 2000

For SM34, 42 & 56
P=rev * 4000

For ServoStep
P=rev * 8000

G also resets
several system
state fl ags

The relative distance will be added to the current position, either during or
after a move. It is added to the desired position rather than the actual position
so as to avoid the accumulation of small errors due to the fact that any servo
motor is seldom exactly where it should be at any instant in time.

G Go, start motion

The G command does more than just start motion. It can be used dynamically
during motion to create elaborate profiles. Since the SmartMotor allows
position, velocity and acceleration to change during motion, “on-the-fly”, the
G command can be used to trigger the next profile at any time. With PLUS
or ServoStep Firmware, the G will not work until all errors are cleared. The
ZS command clears all errors in these cases.

S Abruptly stop motion in progress

If the S command is issued while a move is in progress it will cause an
immediate and abrupt stop with all the force the motor has to offer. After the
stop, assuming there is no position error, the motor will still be servoing. The
S command works in both Position and Velocity modes.

X Decelerate to stop

If the X command is issued while a move is in progress it will cause the motor
to decelerate to a stop at the last entered A= value. When the motor comes
to rest it will servo in place until commanded to move again. The X command
works in both Position and Velocity modes.

O=exp Set/Reset origin to any position

The O= command (using the letter O, not the number zero) allows the host
or program not just to declare the current position zero, but to declare it to
be any position, positive or negative. The exact position to be re-declared is
the ideal position, not the actual position which may be changing slightly due
to hunting or shaft loading. The O= command directly changes the motor's
position register and can be used as a tool to avoid +/- 31 bit roll over position
mode problems. If the SmartMotor runs in one direction for a very long time
it will reach position +/-2,147,483,648 which will cause the position counter
to change sign. While that is not an issue with Velocity Mode, it can create
problems in position mode.

OFF Turn motor servo off

The OFF command will stop the motor from servoing, much as a position
error or limit fault would. When the servo is turned off, one of the status
LEDs will revert from Green to Red. Motors with PLUS firmware have
a different "off" state; they default to MTB (Mode Torque Brake). Rather
than being free-wheeling in their Off state, they are extremely resistive. To
make a PLUS SmartMotor free-wheel, issue BRKRLS immediately followed
by OFF.

CREATING MOTION

23

With PLUS and
ServoStep
Firmware, errors
must be reset
before G will
function. ZS will
reset all errors.

MP Position Mode

Position mode is the default mode of operation for the SmartMotor. If the
mode were to be changed, the MP command would put it back into position
mode. In position mode, the P# and D# commands will govern motion.

BINARY POSITION DATA TRANSFER

The ASCII based command string format, while convenient, is not the fastest
way to communicate data. It can be burdensome when trajectory commands
are sent to the motor. For that reason a special binary format has been
established for the communication of trajectory critical data such as Position,
Velocity and Acceleration. Using the binary format, these 32 bit parameters
are sent as four bytes following a code byte that flags the data for a particular
purpose. The code bytes are 252 for acceleration, 253 for velocity and 254
for position. As an example, the following byte values communicate A=53,
V=-1 & P=2137483648.

 A=53 252 000 000 000 053 032
 V=-1 253 255 255 255 254 032
 P=2137483648 254 127 255 255 255 032

For further expediency, the commands can be appended with the G command
to start motion immediately. Two examples are as follows (the ASCII value
for G is 71):

 P=0 G 254 000 000 000 000 071 032
 V=512 G 253 000 000 002 000 071 032

MV Velocity Mode

Velocity mode will allow continuous rotation of the motor shaft. In Velocity
mode, the programmed position using the P or the D commands is ignored.
Acceleration and velocity need to be specified using the A= and the V=
commands. After a G command is issued, the motor will accelerate up to
the programmed velocity and continue at that velocity indefinitely. In velocity
mode as in Position mode, Velocity and Acceleration are changeable on-the-
fly, at any time. Simply specify new values and enter another G command
to trigger the change. In Velocity mode the velocity can be entered as a
negative number, unlike in Position mode where the location of the target
position determines velocity direction or sign. If the 32 bit register that holds
position rolls over in velocity mode it will have no effect on the motion.

MT Torque Mode

In torque mode the motor shaft will simply apply a torque independent of
position. The internal encoder tracking will still take place, and can be read
by a host or program, but the value will be ignored for motion because the
PID loop is inactive. To specify the amount of torque, use the T= command,
followed by a number between -1023 and 1023.

CREATING MOTION

24

T=exp Set torque value, -1023 to 1023

In torque mode, activated by the MT command, the drive duty cycle can be
set with the T= command. The following number or variable must fall in the
range between -1023 and 1023. The full scale value relates to full scale or
maximum duty cycle. At a given speed there will be reasonable correlation
between drive duty cycle and torque. With nothing loading the shaft, the T=
command will dictate open-loop speed.

MD Contouring Mode (requires host)

SmartMotors with version 4.15 or greater firmware which includes all
PLUS and ServoStep SmartMotors have the added ability to do multiple
axis contouring. This firmware version became standard roughly mid-year
2001. The Contouring Mode is
the foundation of the Animatics'
G-Code interface that enables a
P.C. and multiple SmartMotors to
interpret G-Code files and do lin-
ear, circular and helical interpola-
tion as well as unlimited multi-axis
contouring.

The best way to take advantage of
the SmartMotors contouring capa-
bility is to utilize the Animatics
Provided Drivers that come with
the SMI program. These drivers
can free you from the additional
work of implement the base level
of the contouring functions in your
own host level software. Still, if
you wish to implement the function yourself, the following will detail how
that is done.

The basic principle of operation takes advantage of the fact that each
SmartMotor has a very accurate time base. Absolute position-time pairs of
data get sent to the SmartMotor to fill buffers that facilitate continuous motion.
The SmartMotor will adjust its own Velocity and Acceleration to be certain to
arrive at the specified position at the exact specified time without slowing to
a stop. As new position-time pairs arrive, the motor transitions smoothly from
one profile to the next producing smooth, continuous motion. In a multiple
axis configuration, different positions can be sent to different motors, with
the same time intervals resulting in smooth, continuous multiple axis motion.
The key is for the host to regulate the volume of data in each of the
different motor's buffers. The position-time pairs of data are preceded with an
identification byte and then four bytes for position and four for time. Time is
in units of servo samples and is limited to 23 bits. Time is further constrained
to be even powers of 2 (i.e. 1, 2, 4, 8, ..., 32768).

CREATING MOTION

25

Contouring Mode is
the foundation of
Animatics' G-Code
interface that
enables a P.C. and
multiple
SmartMotors to
interpret G-Code
fi les and do multiple
axis contouring.

26

The coordinating host can send the Q command to solicit status information
on the coordination process. Upon receiving the Q command, the SmartMotor
will return status, clock and space available in the dedicated circular buffer.
The response to Q takes two forms, one while the mode is running with
trajectory in progress and no errors having occurred and another when the
mode is not running. Both responses conform to the overall byte format of:

 Q Response: 249 byte1 byte2 byte3 byte4

If the mode is running:

 byte1 bit 7 is set
 byte1 bits 6 through 0 return data slots available
 bytes 2, 3 & 4 return the 24 bit clock of the SmartMotor

If the mode is not running:

 byte1 bit 7 is clear
 byte1 bits 6 through 0 return status
 byte2 returns space available
 bytes 3 & 4 return the 12 lower bits of the 24 bit clock of the SmartMotor

As absolute position and time data is sent to the SmartMotor, differences are
calculated what are referred to as "deltas". A delta is the difference between
the latest value and the one just prior. Time deltas are limited to 16 bits while
Position deltas are limited to 23 bits in size.

The Status Byte is constructed as follows:

 bit0=1 MD mode pending a G
 bit1=1 MD mode actually running
 bit2=1 Invalid time delta > 16 bit received
 bit3=1 Invalid position delta > 23 bits received
 bit4=1 Internal program data space error
 bit5=1 Host sent too much data (data buffer overflow)
 bit6=1 Host sent too little data (data buffer underflow)

A trajectory terminates if an unacceptable position error occurs, if invalid data
is received, if there is a data overflow or if there is a data underflow.

The host should send data pairs only when at least 3 empty data slots are
available. MD responds to limit switches with an aborted trajectory. The MD
mode uses KV feed forward for improved performance.

The byte flag that precedes and marks a position is of decimal value 250. The
byte flag that precedes and marks a time is of decimal value 251.

The following is an example of the decimal byte values for a series of constant
speed motion segments. Firmware versions 4.16 and higher do not need
time values after the first two if the time delta is not changing. The byte
transfers terminate with a carriage return (13).

CREATING MOTION

27

 Position 250 000 000 000 000 013 Position = 0

 Time 251 000 000 000 000 013 Time = 0

 Position 250 000 000 016 000 013

 Time 251 000 000 001 000 013 Time delta = 256

 Position 250 000 000 032 000 013

 Position 250 000 000 048 000 013

 Position 250 000 000 052 000 013 Reduce position delta

 Time 251 000 000 003 064 013 Reduce time delta

 Position 250 000 000 056 000 013

 Position 250 000 000 060 000 013

 Position 250 000 000 064 000 013

What is not shown in the these codes are the addressing bytes that would
be used to differentiate multiple motors on a network. As described ahead
in this manual (see the SADDR command), a network of SmartMotors can
be sorted out by sending a single address byte. When communicating to a
particular motor, the address byte need only be sent once, until all of the
communications to that particular motor are complete and another motor
needs to be addressed. The byte patterns in the previous example would
need to be preceded with an address byte (to a properly addressed motor) for
multiple axis contouring. In the addressing scheme, there is a global address
provision for sending data to all motors at once. By zeroing out the clocks
before starting the contouring, the motors will by synchronized and single time
values can then be sent to all motors at once, increasing overall bandwidth.
Also, as mentioned earlier, SmartMotors with version 4.16 or higher do not
need time data past the first two, if there is no change in the time delta.

Note that Time Data is the same for all motors and should be sent once to all
motors at the same time, preceded by the global address byte (128).

The basis for contouring using this format is to keep the rate at which data
is sent to each motor constant (and as fast as possible). That means that
in order to accelerate axes, absolute positions need to be sent that invoke
progressively larger position deltas, and to keep constant velocity, absolute
positions need to be sent that are equidistant.

With all of the communications to send data and receive status, it would be
outstanding to have a bandwidth on a two axis system of 64 samples, or
16ms. Typically, with a three or four axis system a bandwidth of 128 servo
samples or 32ms is achievable. This would be at a baud rate of 38.4k.
Keep in mind that during this time the SmartMotor is micro interpolating. The
motion will be very smooth and continuous.

In contouring mode, all of the binary contouring data goes into the motor's

CREATING MOTION

This example does
not include
addressing bytes.
Refer to the section
on Addressing
SmartMotors to
learn the most
effi cient way to
address different
motors.

28

buffers. While this is true, regular commands will still be recognized and they
will operate normally. This will take some time, however, and it is up to the
programmer to assure that the buffers never underflow due to neglect.

With Non-PLUS Firmware, contouring mode can be exited in only two ways.
One way is to simply stop sending data, causing the buffers to underflow.
This is effective, but leaves the motors off altogether. Alternatively, contouring
mode can be terminated by sending a long time delta to the motor while
holding position, estimating when the motor would be executing the long time
delay and sending a G command, and likely a P=(last host mode position), to
execute the next buffered mode.

PLUS and ServoStep Firmware afford more options related to termination
of contour mode. Consecutive identical clock values may be sent to the
SmartMotors to produce a zero time delta. When the host mode clock has
reached the identical clock value, the host mode trajectory position is latched,
the host mode trajectory velocity is latched and a "G-on-th-fly" is executed
internally, using buffered mode, acceleration, velocity, position and relative
distance. The position associated with the duplicated clock value is ignored.
Any buffered mode (other than host mode) initiated by the G command will
be initiated, including: MV, MP (w/P=#), MP (w/D=#), MFR, MFN, MSR and
MS. As an example, the following code will cause the motor to servo in place
at the final host mode trajectory position:

 A=100 ‘Set Acceleration
 V=10000 ‘Set Velocity
 MD ‘Init. buffered coordinate collection

 <Load buffers with initial pos-time coordinates>

 G ‘Start the contouring motion

 <Stream pos-time coordinates for contouring>

 MP ‘Buffer next mode after Host Mode

 <Stream pos-time coordinates for contouring>

 D=0 ‘Buffer next pos. move after Host Mode

 <Stream pos-time coordinates for contouring>

 MP ‘Buffer next mode after Host Mode

 <Send two identical time values to end Host Mode>

At this point the motors will come to a rest. If the motor is at speed when
leaving Host Mode, then it will decelerate to rest and then return to the exact
position where Host Mode was terminated. One could just as well exit Host
Mode in Velocity Mode and maintain a constant speed.

CREATING MOTION

29

MD50 Drive Mode (Removed in Plus & ServoStep Firmware)

The MD50 command causes the SmartMotor to emulate a traditional servo
and amplifier. In this mode, Port A is assigned to receive an analog command
signal input where 0-5VDC commands -100% to +100% PWM in Torque
Mode. 2.5VDC is the center point for zero torque. To balance the internal
5K Ohm pull-up resistor, it is suggested that a 5k external pull-down resistor
be used. Understand that no I/O port can acommodate a negative voltage
swing. Only 0-5VDC can be applied directly to the I/O pins. It is best to
make use of an isolated analog signal conditioner to convert a +/-10VDC
command signal to 0-5VDC. Otherwise, for a 0-10VDC (positive only) signal,
a simple voltage divider could be used. The external command signal must
have a complementary push-pull drive circuit capable of driving 10mAmps
minimum for a good linear response from the motor.

 UAI 'Assign Port A as an Input Port

 MD50 'Set Drive Mode

 BRAKE COMMANDS
BRKRLS Brake release

BRKENG Brake engage

BRKSRV Release brake when servo active, engage when not

BRKTRJ Release brake when running a trajectory, engage under
 all other conditions. Turns servo off when the brake is
 engaged

Many SmartMotors are available with power safe brakes. These brakes will
apply a force to keep the shaft from rotating should the SmartMotor lose
power. Issuing the BRKRLS command will release the brake and BRKENG
will engage it. There are two other commands that initiate automated
operating modes for the brake. The command BRKSRV engages the brake
automatically, should the motor stop servoing and holding position for any
reason. This might be due to loss of power or just a position error, limit
fault, over-temperature fault.

Finally, the BRKTRJ command will engage the brake in response to all of
the previously mentioned events, plus any time the motor is not performing a
trajectory. In this mode the motor will be off, and the brake will be holding
it in position, perfectly still, rather than the motor servoing when it is at
rest. As soon as another trajectory is started, the brake will release. The
time it takes for the brake to engage and release is on the order of only
a few milliseconds.

The brakes used in SmartMotors are zero-backlash devices with extremely
long life spans. It is well within their capabilities to operate interactively within
an application. Care should be taken not to create a situation where the brake
will be set repeatedly during motion. That will reduce the brake’s life.

CREATING MOTION

30

CREATING MOTION

BRKC, BRKG, BRKI Re-route brake signal to I/O pin C or G (PLUS
 and ServoStep firmware only)

When the automated brake functions are desired for an external brake,
commands BRKC and BRKG can be used. These commands re-route the
internal brake signal to the respective I/O pins. The brake signal is active low.
The BRKI command restores the brake function to the internal brake signal
used with internally installed brakes. Only one pin can be used as the brake
pin at any one time so each command supersedes the other.

MTB Mode Torque Brake (Available only in SmartMotors with
 PLUS firmware)

Mode Torque Brake is the default state of SmartMotors operating from PLUS
firmware. It causes the amplifier to dynamically "brake" the motor when it
is in it's off state. Upon a fault, or the OFF command, instead of the motor
coasting to a stop, it will abruptly stop. This is not done by servoing the
motor to a stop, but by simply shorting all of the coils to ground. If there
is a constant torque on the motor, it will allow only very slow movement
of the shaft.

To deactivate MTB, issue BRKRLS immediately followed by OFF. The
default MTB action is consistent with BRKSRV mode. When Status bit Bo
(motor-off) is 0, MTB will be inactive, whereas when Bo is 1, MTB will be
active. Basically, when the motor is off for any reason, MTB will be active,
including upon power-up.

If BRKTRJ is selected, then MTB will be inactive when the Bt (busy-trajectory)
bit is 1, and active when Bt is zero.

When BRKRLS is followed by OFF, MTB will become inactive until the next
MTB command is issued. Issuing BRKENG will not activate MTB.

The RMODE command will report a "B" when MTB is active.

SLE, SLD Software Limits Enable and Disable (PLUS and
ServoStep Firmware only)

As an alternative to Hardware Limits, connected to the limit inputs of the
SmartMotor, software limits offer distinct advantages. Software limits are
"virtual" limit switches that can interrupt motion in the event the motor strays
beyond the desired region of operation.

When BRKG is
used, do not issue
the following
commands:
 RS4
 OCHN(RS4,...
 UGI
 UG=<value>
 <variable>=UG

31

Program commands are like chores, whether it is to turn on an output, set
a velocity or start a move. A program is a list of these chores. When a
programmed SmartMotor is powered-up or its program is reset with the Z
command, it will execute its
program from top to bottom,
with or without a host P.C.
Connected. This section cov-
ers the commands that con-
trol the program itself.

SmartMotor programs are
written in the SMI software
editor opened by selecting
FILE - NEW. The simple
program example to the right
shows an infinite loop. It
will cause the motor to move
back and forth, forever.

The following are commands that can be used in your program to control how
it flows and how it makes decisions:

RUN Execute stored user program

If the SmartMotor is reset with a Z command, all previous variables and
mode changes will be erased for a fresh start and the program will begin
to execute from the top. Alternatively the RUN command can be used to
start the program, in which case the state of the motor is unchanged and
its program will be invoked.

RUN? Halt program if no RUN issued

The RUN? command prevents further execution of code until RUN is issued.
Code will execute on power-up to the point of reaching RUN?. When RUN
is issued via the serial port, the CPU will, at that point, execute all code
from the top-down and jump over the RUN? command to the next line of
code, continuing on.

 PRINT("Boot-Up",#13) ‘Message always prints
 RUN? ‘Program stops here on power-up
 PRINT(Run Issued",#13 ‘This runs if RUN received
 END

The above code will print only the first message upon power-up, but both
messages when a RUN command is received over the serial line.

Once the program is running, there are a variety of commands that can
redirect program flow and most of those can do so based on certain
conditions. How these conditional decisions are setup determines what the
programmed SmartMotor will do, and exactly how “smart” it will actually be.

PROGRAM FLOW

GOTO# Redirect program flow

C# Subroutine label, C0-C999

The most basic commands for redirecting program flow, without inherent
conditions, are GOTO# in conjunction with C#. Labels are the letter C
followed by a number (#) between 0 and 999 and are inserted in the program
as place markers. If a label, C1 for example, is placed in a program and
that same number is placed at the end of a GOTO command, GOTO1, the
program flow will be redirected to label C1 and the program will proceed
from there.

 C10 ‘Place label
 IF UAI==0 ‘Code
 GOSUB20 ‘Code
 ENDIF ‘Code
 IF UBI==0 ‘Code
 GOSUB30 ‘Code
 ENDIF UAI==0 ‘Code
 GOTO10 ‘Will loop back to C10

As many as a thousand labels can be used in a program (0 - 999), but, the
more GOTO commands used, the harder the code will be to debug or read.
Try using only one and use it to create the infinite loop necessary to keep the
program running indefinitely, as some embedded programs do. Put a C10
label near the beginning of the program, but after the initialization code and
a GOTO10 at the end and every time the GOTO10 is reached the program
will loop back to label C10 and start over from that point until the GOTO10
is reached, again, which will start the process at C10 again, and so on.
This will make the program run continuously without ending. Any program
can be written with only one GOTO. It might be a little harder, but it will
tend to force better program organization, which in turn, will make it easier
to be read and changed.

END End program execution

If it is necessary to stop a program, use an END command and execution
will stop at that point. An END command can also be sent by the host to
intervene and stop a program running within the motor. The SmartMotor
program is never erased until a new program is downloaded. To erase the
program in a SmartMotor, download only the END command as if it were a
new program and that’s the only command that will be left on the SmartMotor
until a new program is downloaded. To compile properly, every program
needs and END somewhere, even if it is never reached. If the program needs
to run continuously, the END statement has to be outside the main loop.

PROGRAM FLOW

32

Calling subroutines
from the host can
crash the stack if
not done
thoughtfully.

GOSUB# Execute a subroutine

RETURN Return from subroutine

Just like the GOTO# command, the GOSUB# command, in conjunction with
a C# label, will redirect program execution to the location of the label. But,
unlike the GOTO# command, the C# label needs a RETURN command to
return the program execution to the location of the GOSUB# command that
initiated the redirection. There may be many sections of a program that need
to perform the same basic group of commands. By encapsulating these
commands between a C# label and a RETURN, they may be called any
time from anywhere with a GOSUB#, rather than being repeated in their
totality, over and over again. There can be as many as one thousand
different subroutines (0 - 999) and they can be accessed as many times
as the application requires.

By pulling sections of code out of a main loop and encapsulating them into
subroutines, the main code can also be easier to read. Organizing code into
multiple subroutines is a good practice.

 C10 ‘Place label
 IF UAI==0 ‘Check Input A
 GOSUB20 ‘If Input A low, call Subroutine
 ENDIF ‘End check Input A
 GOTO10 ‘Will loop back to C10

 C20 ‘Subroutine Label
 PRINT("Subroutine Activated",#13) ‘Code
 RETURN ‘Return to line after GOSUB

F=32, F=64, RETURNF , RETURNI (PLUS and ServoStep only)

SmartMotors with PLUS firmware and ServoStep motors have automatic
interrupt based GOSUB capabilities. After an F=32 mode bit is set, the
program will go immediately to the subroutine "C1" when a motor protection
fault occurs. Subroutine C1 should terminate with the RETURNF command
rather than the standard RETURN. After the RETURNF is reached, program
execution will take up precisely where it had been previously diverted. The
following faults will trigger subroutine C1 in this mode:

 Be: Position Error
 Bh: Over Temperature or Over Current Error
 Bp: Real time Positive Limit via software or hardware limits
 Bm: Real time Negative Limit via software or hardware limits

It is important to note that without the F=32 mode bit set (in PLUS and
ServoStep only), and a C1 routine present, any of the motor fault errors will
result in program termination. The motor will stop under full MTB (Mode
Torque Brake), where all coils of the motor are internally grounded. Once a
motor protection fault as occured, the G command will have no effect until the

PROGRAM FLOW

33

With PLUS or
ServoStep
Firmware, any
motor protection
fault will result in
program
termination unless
the F=32 bit is set
and a C1
subroutine exists.

fault has been cleared. The ZS command clears all faults at once.

Setting the F=64 mode bit similarly causes program execution to jump to label
C2 when the I/O pin G goes from a high to a low. The RETURNI is used
to terminate the C2 subroutine.

The WAIT command is the only motor instruction that will be truncated
automatically when interrupted. Wherever the WAIT command is in its timing
cycle, it will be terminated upon return and so is at risk of being shortened
in the event of an F=64 interrupt. Since F=64 uses the G port, it would be
necessary that you turn off the G port's default action, which is to start motion.
To deactivate the start function, issue a UGI. Note also that the BRKG
command routes automated brake functions to the G port.

If both F=32 and F=64 need to be used at the same time, then be aware that
these are bits in a broader configuration byte. It is best to use a shadow
variable to store the byte and set them this way:

 f=f|32 ‘Set F=32 bit in the shadow variable
 (C1 Routine)

 f=f|64 ‘Set F=64 bit in the shadow variable
 (C2 Routine)

 F=f ‘Set the modes into action

When used together, the C1 subroutine has higher priority than the C2
subroutine. If the C2 subroutine is executing and there is an error, the C1
subroutine will execute and then return execution to the C2 subroutine when
finished. If this is not desired, the C2 subroutine shoud clear the F=32 mode
bit in the beginning and reset the bit at the end of the C2 code.

The STACK and END commands clear the tracking of subroutine nesting,
even with interrupt subroutines.

IF, ENDIF Conditional Test

Once the execution of the code reaches the IF command, the code between
that IF and the following ENDIF will execute only when the condition directly
following the IF command is true. For example:

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 IF a==1 ‘Use double = test
 b=1 ‘Set ‘b’ to one
 ENDIF ‘End IF

Variable b will only get set to one if variable a is equal to one. If a is not
equal to one, then the program will continue to execute using the command
following the ENDIF command.

Notice also that the SmartMotor language uses a single equal sign (=) to

PROGRAM FLOW

34

make an assignment, such as where variable a is set to equal the logical
state of input A. Alternatively, a double equal (==) is used as a test, to
query whether a is equal to 1 without making any change to a. These are
two different functions. Having two different syntaxes has farther reaching
benefits.

ELSE, ELSEIF

The ELSE and ELSEIF commands can be used to add flexibility to the IF
statement. If it were necessary to execute different code for each possible
state of variable a, the program could be written as follows:

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 IF a==0 ‘Use double ‘=’ test
 b=1 ‘Set ‘b’ to one
 ELSEIF a==1
 c=1 ‘Set ‘c’ to one
 ELSEIF a==2
 c=2 ‘Set ‘c’ to two
 ELSE ‘If not 0 or 1
 d=1 ‘Set ‘d’ to one
 ENDIF ‘End IF

There can be many ELSEIF statements, but at most one ELSE. If the
ELSE is used, it needs to be the last statement in the structure before the
ENDIF. There can also be IF structures inside IF structures. That's called
“nesting” and there is no practical limit to the number of structures that can
nest within one another.

The commands that can conditionally direct program flow to different areas
use a constant [#] like 1 or 25, a variable like a or al[#] or a function involving
constants and/or variables a+b or a/[#]. Only one operator can be used in a
function. The following is a list of the operators:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 == Equals (use two =)

 != Not equal

 < Less than

 > Greater than

 <= Less than or equal

PROGRAM FLOW

35

36

 >= Greater than or equal

 & Bit wise AND (see appendix A)

 | Bit wise OR (see appendix A)

WHILE, LOOP

The most basic looping function is a WHILE command. The WHILE is
followed by an expression that determines whether the code between the
WHILE and the following LOOP command will execute or be passed over.
While the expression is true, the code will execute. An expression is true
when it is non-zero. If the expression results in a “zero” then it is false. The
following are valid WHILE structures:

 WHILE 1 ‘1 is always true
 UA=1 ‘Set output to 1
 UA=0 ‘Set output to 0
 LOOP ‘Will loop forever

 a=1 ‘Initialize variable ‘a’
 WHILE a ‘Starts out true
 a=0 ‘Set ‘a’ to 0
 LOOP ‘This never loops back

 a=0 ‘Initialize variable ‘a’
 WHILE a<10 ‘a starts less
 a=a+1 ‘a grows by 1
 LOOP ‘Will loop back 10x

The task or tasks within the WHILE loop will execute as long as the function
remains true.

The BREAK command can be used to break out of a WHILE loop, although
that somewhat compromises the elegance of a WHILE statement’s single test
point, making the code a little harder to follow. The BREAK command should
be used sparingly or preferably not at all in the context of a WHILE.

If it's necessary for a portion of code to execute only once based on a certain
condition then use the IF command.

SWITCH, CASE, DEFAULT, BREAK, ENDS

Long, drawn out IF structures can be cumbersome, however, and burden the
program visually. In these instances it can be better to use the SWITCH
structure. The following code would accomplish the same thing as the
previous program:

PROGRAM FLOW

37

For the exact
sample period,
use the RSP
command

PROGRAM FLOW

 a=UAI ‘Variable ‘a’ set 0,1
 a=a+UBI ‘Variable ‘a’ 0,1,2
 SWITCH a ‘Begin SWITCH
 CASE 0
 b=1 ‘Set ‘b’ to one
 BREAK
 CASE 1
 c=1 ‘Set ‘c’ to one
 BREAK
 CASE 2
 c=2 ‘Set ‘c’ to two
 BREAK
 DEFAULT ‘If not 0 or 1
 d=1 ‘Set ‘d’ to one
 BREAK
 ENDS ‘End SWITCH

Just as a rotary switch directs electricity, the SWITCH structure directs the
flow of the program. The BREAK statement then jumps the code execution to
the code following the associated ENDS command. The DEFAULT command
covers every condition other than those listed. It is optional.

TWAIT Wait during trajectory

The TWAIT command pauses program execution while the motor is moving.
Either the controlled end of a trajectory, or the abrupt end of a trajectory
due to an error, will terminate the TWAIT waiting period. If there were a
succession of move commands without this command, or similar waiting
code between them, the commands would overtake each other because
the program advances, even while moves are taking place. The following
program has the same effect as the TWAIT command, but has the added
virtue of allowing other things to be programmed during the wait, instead of
just waiting. Such things would be inserted between the two commands.

 WHILE Bt ‘While trajectory
 LOOP ‘Loop back

WAIT=exp Wait (exp) sample periods

There will probably be circumstances where the program execution needs
to be paused for a specific period of time. Time, within the SmartMotor, is
tracked in terms of servo sample periods. Unless otherwise programmed with
the PID# command, the sample rate is about 4KHz. WAIT=4000 would
wait about one second. WAIT=1000 would wait for about one quarter of
a second. The following code would be the same as WAIT=1000, only it
will allow code to execute during the wait if it is placed between the WHILE
and the LOOP.

The SWITCH
statement makes
use of the same
memory space as
variable "zzz". Do
not use this variable
or array space
when using
SWITCH

38

PROGRAM FLOW

 CLK=0 ‘Reset CLK to 0
 WHILE CLK<1000 ‘CLK will grow
 IF UAI==0 ‘Monitor input A
 GOSUB911 ‘If input low
 ENDIF ‘End the IF
 LOOP ‘Loop back

The above code example will check if port A ever goes low, while it is waiting
for the CLK variable to count up to 1000.

STACK Reset the GOSUB return stack

The STACK is where information is held with regard to the nesting of
subroutines (nesting is when one or more subroutines exist within others). In
the event program flow is directed out of one or more nested subroutines,
without executing the included RETURN commands, the stack will be
corrupted. The STACK command resets the stack with zero recorded
nesting. Use it with care and try to build the program without requiring
the STACK command.

One possible use of the STACK command might be if the program used
one or more nested subroutines and an emergency occurred, the program
or operator could issue the STACK command and then a GOTO command
which would send the program back to a label at the beginning. Using
this method instead of the RESET command would retain the states of the
variables and allow further specific action to resolve the emergency.

Here is an example program for PLUS or ServoStep firmware using the
C1 Interrupt capability:

 C1 ‘Interrupt routine C1 (enabled by F mode)
 STACK ‘Clear the nesting stack
 RUN ‘Begin the program, retaining variables
 RETURNF ‘Never reached, but necessary for comp.

Typical standard firmware use:

 P=1234 ‘Set a position
 GOSUB5 ‘Call subroutine 5

 C5 ‘Subroutine 5
 G ‘Start Motion
 TWAIT ‘Wait for motion to stop
 IF Bo ‘Check to see if there was an error
 STACK ‘Clear the nesting stack
 RUN ‘Begin the program, retaining variables
 ENDIF ‘Never reached, but necessary for comp.
 RETURN ‘Never reached, but necessary for comp.

39

Variables are data holders that can be set and changed within the program
or over one of the communication channels. All variables are 32-bit signed
integers and are all lower case only. They are stored in volitile memory,
meaning they are lost when power is removed and default to zero upon
power-up. If they need to be saved, they can be stored in EEPROM, non
volitile memory using the VST command.

There are three sets of variables containing 26 in each. The last 52 can also
be accessed as byte, short or long array elements.

The first 26 variables are accessed with the lower case letters of the alphabet,
a, b, c, . . . x, y, z.

 a=# Set variable a to a numerical value

 a=exp Set variable a to value of an expression

A variable can be set to an expression with only one operator and two
operands. The operators can be any of the following:

 + Addition

 - Subtraction

 * Multiplication

 / Division

 & Bit wise AND (see appendix A)

 | Bit wise OR (see appendix A)

The following are legal:

 a=b+c, a=b+3 a=5+8

 a=b-c a=5-c a=b-10

 a=b*c a=3*5 a=c*3

 a=b/c a=b/2 a=5/b

 a=b&c a=b&8

 a=b|c a=b|15

ARRAYS
In addition to the first 26, there are 52 more long integer variables accessible
with double and triple lower case letters: aa, bb, cc, . . . xxx, yyy, zzz. The
memory space that holds these 52 variables is more flexible, however. This
same variable space can be accessed with an array variable type. An array
variable is one that has a numeric index component that allows the numeric
selection of which variable a program is to access. This memory space is
further made flexible by the fact that it can hold 51 thirty two bit integers,

VARIABLES

or 101 sixteen bit integers, or 201 eight bit integers (all signed). The array
variables take the following form:

 ab[i]=exp Set variable to a signed 8 bit value where index i = 0...200

 aw[i]=exp Set variable to a signed 16 bit value where index i = 0...100

 al[i]=exp Set variable to a signed 32 bit value where index i = 0...50

The index i may be a number, a variable a thorough z, or the sum or
difference of any two variables a thorough z (variables only).

The same array space can be accessed with any combination of variable
types. Just keep in mind how much space each variable takes. We can
even go so far as to say that one type of variable can be written and another
read from the same space. For example, if the first four eight bit integers
are assigned as follows:

 ab[0]=0
 ab[1]=0
 ab[2]=1
 ab[3]=0

They would occupy the same space as the first single 32 bit number, and due
to the way binary numbers work, would make the thirty two bit variable equal
to 256. The order is most significant to least with ab[0] being the most.

A common use of the array variable type is to set up what is called a buffer.
In many applications, the SmartMotor will be tasked with inputting data about
an array of objects and to do processing on that data in the same order,
but not necessarily at the same time. Under those circumstances it may
be necessary to “buffer” or “store” that data while the SmartMotor processes
it at the proper times.

To set up a buffer the programmer would allocate a block of memory to it,
assign a variable to an input pointer and another to an output pointer. Both
pointers would start out as zero and every time data was put into the buffer the
input pointer would increment. Every time the data was used, the output buffer
would likewise increment. Every time one of the pointers is incriminated, it
would be checked for exceeding the allocated memory space and rolled
back to zero in that event, where it would continue to increment as data
came in. This is a first-in, first-out or “FIFO” circular buffer. Be sure there
is enough memory allocated so that the input pointer never overruns the
output pointer.

VARIABLES

40

See Appendix D
for a table
describing
overlapping
memory allocation
for
User Assigned
Array Variables.

STORAGE OF VARIABLES

Every SmartMotor has its own little solid-state disk drive for long term storage
of data. It is based on EEPROM technology and can be written to, and read
from, more than a million times.

EPTR=expression Set EEPROM pointer, 0-7999

To read or write into this memory space it is necessary to properly locate the
pointer. This is accomplished by setting EPTR equal to the offset.

VST(variable,index) Store variables

To store a series of variables, use the VST command. In the "variable" space
of the command put the name of the variable and in the "index" space put
the total number of sequential variables that need to be stored. Enter a one
if just the variable specified needs to be stored. The actual sizes of the
variables will be recognized automatically. Do not put the VST command in
a tight program loop or you will likely exceed the 1M write cycles, damaging
the EEPROM.

VLD(variable,index) Load variables

To load variables, starting at the pointer, use the VLD command. In the
"variable" space of the command put the name of the variable and in the
"index" space put the number of sequential variables to be loaded.

FIXED OR PRE-ASSIGNED READABLE VARIABLES

In addition to the general purpose variables there are variables that are
gateways into the different functions of the SmartMotor itself.

 @P Current position

 @PE Current position error

 @V Current velocity

 ADDR Motor’s self address

 CHN0 RS-232 com error flags

 CHN1 RS-485 com error flags

 CLK Read/Write sample rate counter (clock)

 CTR External encoder count variable

 I Last recorded index position

 LEN # of characters in RS-232 input buffer

 LEN1 # of characters in RS-485 input buffer

 TEMP SmartMotor Temperature in Degrees Centigrade

VARIABLES

41

Keep the VST
command out of
tight loops to
avoid exceeding
the 1M write cycle
limit of the
EEPROM.

 U 7-bit value of user input/output pins A-G (PLUS and
 ServoStep firmware only)

 UAA - UGA I/O Digital Input

 UAI - UGI I/O Analog Input

 UIA SmartMotor Current in Tens of Milliamps

 UJA SmartMotor Voltage in Tenths of Volts

VARIABLE SPACE RESTRICTIONS

Due to limited Microprocessor resources within the SmartMotor, some func-
tions use variable space otherwise accessible to the user. These are as
follows:
 1) SmartMotors with firmware 4.15 or lower, and 4.40 use
 variables xxx, yyy and zzz for the implimentation of the SWITCH
 function.

 2) DeviceNet and Profibus SmartMotors use variable zzz.

 3) Contouring Mode uses variables aa - yyy, leaving zzz for SWITCH.

The SMI program uses variables to undertake certain functions as well. This
can be useful to know as it may impact your program development.

 1) Variable z is used in MotorView and Plaground to read Digital
 Inputs for motors with firmware pre-dating PLUS and ServoStep.

 2) Variables a, b, p, t, w and z are used with the Tuning Program
 (although they are saved and restored after the tuning)

 3) Variables aaa-jjj, ab[0] and aw[0] are used when reading or
 writing information to the EEPROM by the SMI program
 (although these are saved and restored as well).

 4) Variable yyy is used when calibrating a ServoStep.

VARIABLES

42

Reading
SmartMotor
Current can give
an indication of
the resistance the
shaft is feeling, as
can Position Error
(@PE).

The SmartMotor has a wealth of data that can be retrieved over the RS-232
or RS-485 ports simply by asking. Data and status reporting commands can
be tested by issuing them in the SMI
Terminal window. In the example to
the right, The command is shown on
the left and the SmartMotor's response
is shown in the middle. The SMI host
software uses these commands to
implement the Motor View and Monitor
View tools. Data that does not
have direct report commands can be
retrieved either of two ways, by embed-
ding the variable in a PRINT command, or by setting a variable equal to the
parameter and then reporting the variable. The following are commands, that
when sent to the SmartMotor, will return valuable data:

 REPORT TO HOST COMMANDS
 Ra...Rzzz Report variables a ... zzz, 78 in all

 Rab[i]* Report 8 bit variable value Rab[i]

 Raw[i]* Report 16 bit variable value Raw[i]

 Ral[i]* Report 32 bit variable value Ral[i]

 RA Report buffered acceleration

 RAIN{port}{ch} Report 8 bit analog input port=A-H, ch= 1-4

 RAMPS Report assigned maximum current

 RBa Report over current status bit

 RBb Report parity error status bit

 RBc Report communications error bit

 RBd Report user math overflow status bit

 RBe Report position error status bit

 RBf Report communications framing error status bit

 RBk Report EEPROM read/write status bit

 RBl Report historical left limit status bit

 RBi Report index status bit

 RBh Report overheat status bit

 RBm Report negative limit status bit

 RBo Report motor off status bit

 RBp Report positive limit status bit

 RBr Report historical right limit status bit

REPORTING COMMANDS

43

*See Appendix D
for a table
describing
overlapping
memory allocation
for User Assigned
Array Data
Variables.

44

 RBs Report program scan status bit

 RBt Report trajectory status bit

 RBu Report user array index status bit

 RBw Report wrap around status bit

 RBx Report hardware index input level

 RCHN Report combined communications status bits

 RCHN0 Report RS-232 communications status bits

 RCHN1 Report RS-485 communications status bits

 RCLK Report clock value

 RCTR Report secondary counter

 RCS Report RS-232 communications check sum

 RCS1 Report RS-485 communications check sum

 The RCS commands sum the ASCII values of all
 incomming serial bytes in an 8-bit, recycling register
 with a result that always falls on or between 0 and
 255, and which resets to zero after being read.
 Using the SMI terminal, the following can be
 observed. Note that the SMI terminal uses a
 'space' or ASCII 32 as a delimiter, and issue an
 RCS before testing this example to make sure you
 start with a value of zero:

 A=100 65 61 49 48 48 32 = 303

 V=320000 85 61 51 50 48 48 48 48 32 = 472

 G 71 32 = 103

 RCS 82 67 83 32 = 264

 The sum of all of these numbers is 1142. The
 formula to determine the recycling 8-bit value is:

 1142 - int(1142/256) * 256 = 118

 RD Report buffered move distance value

 RDIN{port}{ch} Report 8 bit digital input byte, port=A-H, and
 ch=0-63

 RE Report buffered maximum position error

 RI Report last stored index position

 RKA Report buffered acceleration feed forward coefficient

 RKD Report buffered derivative coefficient

 RKG Report buffered gravity coefficient

 RKI Report buffered integral coefficient

 RKL Report buffered integral limit value

 RKP Report buffered proportional coefficient

REPORTING COMMANDS

45

 RKS Report buffered sampling interval

 RKV Report buffered velocity feed forward coefficient

 RMODE Report present positioning mode:

 P Absolute position move

 R Relative position move

 V Velocity move

 T Torque mode

 F Follow mode

 S Step and Direction mode

 C Cam Table mode

 W Drive mode

 X Follow mode with multiplier

 E Position error

 O Motor off

 H Contouring mode

 RP Report measured position

 RPE Report present position error

 RS Report status byte (8 system states)

 The RS status byte consists of the lower 8 bits of
 RW, except that with RS, the limit bits are Real
 Time. RW is detailed in the following table.

 RSP Report sample period and version number

 RT Report current requested torque

 RU Report all 7 I/O in one byte (PLUS & ServoStep)

 RU{pin} Report digital I/O states (PLUS & ServoStep)

 RU{pin}A Report analog I/O states (PLUS & ServoStep)

 RV Report velocity

 RW Report status word (16 system states) detailed in
 following table:

REPORTING COMMANDS

46

Three very valuable pieces of data do not have direct report commands,
these are Temperature, Voltage and Current.

To read Temperature, issue the following commands, for example:

 z=TEMP ‘Put TEMP into variable z
 Rz ‘report variable z

The number returned by the above example is in units of Degrees
Centigrade.

To read Voltage, issue the following commands, for example:

 z=UJA ‘Put UJA into variable z
 Rz ‘report variable z

The number returned by the above example is in units of tenths of Volts. So,
for example, if you read 259, that will mean 25.9 Volts.

To read Temperature, issue the following commands, for example:

 z=UIA ‘Put UIA into variable z
 Rz ‘report variable z

The number returned by the above example is in units of tens of milliamps.
So, for example, if you read 145, that will mean 1.45 Amps.

REPORTING COMMANDS

Bit:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Value:
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
23768

Meaning:
Trajectory In Progress
Historical Right (+) Limit
Historical Left (-) Limit
Index Report Available
Wraparound Occurred
Excessive Position Error
Excessive Temperature
Motor is Off
Index Input Asserted
Right (+) Limit Asserted
Left (-) Limit Asserted
User Math Overflow
User Array Index Error
Syntax Error
Overcurrent Occurred
Program Checksum Error

Clear:

Zr, ZS
Zl, ZS
Ri, =I
Zw, ZS
Ze, ZS
ZS

Zd, ZS
Zu, ZS
Zs, ZS
Za, ZS
ZS

Related Commands:
G, TWAIT
UCI, UCO, UC=, UCP
UDI, UDO, UD=, UDM

O=, MF0, MS0
E=
THD, TH=
OFF

UCI, UCO, UC=, UCP
UDI, UDO, UD=, UDM

ab[], aw[], al[]

RW Components:16 status bits can
be read with a
single RW request.
Two bytes get
reported with the
status bits coded
in them per this
table.

47

Through the two pins, A and B of the I/O connector, quadrature or step
and direction signals can be fed into the SmartMotor at high speeds and
be followed by the motor itself. This feature brings about the following
capabilities:

1 Mode Follow

2 Mode Step and Direction

3 Mode Follow with ratio

4 Mode Step and Direction with ratio

5 Mode Cam

In addition to the above embedded modes of operation, the internal counter
can be set to either count encoder signals or step signals and be accessible
to the internal program or a host through the CTR variable.

When the SmartMotor is in one of the above five modes it may also run
internal programs and communicate with a host, all at the same time.

MF1, MF2 and MF4 Mode Follow

Mode Follow allows the SmartMotor™ to follow an external encoder. Three
resolutions can be selected through hardware, and a virtually infinite number
of resolutions can be set in firmware using the MFR command described
ahead. Set the hardware for maximum resolution with the MF4 command.
The MF2 The MF1 commands set the hardware to lesser resolutions, but are
obsolete with the advent of the newer MFR capability.

MF0, MS0

The MF0 and MS0 commands must not be issued during one of the other
follow modes. They are used for an entirely different purpose. If it is not
desired to directly follow an incoming encoder or step signal, but rather, just
to track them and use the counter value within a program or from a host, then
issuing MF0 or MS0 utilizes the maximum resolution available and makes the
value available through the CTR variable. Issuing MF0 or MS0 will zero that
variable and incoming encoder or step signals will increment or decrement
the signed, 32-bit CTR variable value.

MFDIV=expression Set Ratio divisor

MFMUL=expression Set Ratio multiplier
 where -256.0000 < Ratio < 256.0000

After the appropriate MF# command is issued, or the MS command has been
issued, a floating point ratio can further be applied by the firmware. Since the
SmartMotor is an integer machine, that floating point ratio is accomplished by
dividing one number by another.

ENCODER AND PULSE TRAIN FOLLOWING

The SM2315D
does not have
Quadrature
Encoder following
capability.

MFR Calculate Mode Follow Ratio

MSR Calculate Mode Step Ratio

Once a numerator and denominator have been specified, and the appropriate
hardware mode is selected, the motor can be put into ratio mode with the
MFR or MSR commands (MSR for ratioing incoming step and direction
signals). The following example sets up a 10.5:1 relationship:

 MF4 ‘Read in full quadrature decode
 MFMUL=2 ‘10.5:1=21:2
 MFDIV=21
 D=0 ‘be sure D is zero
 MFR ‘Invoke calculation
 G ‘Start

Once in a ratio mode the V=# and D=# commands will still work. They will
invoke a phase shift of length D at a relative rate determined by V. For that
reason, D must be zeroed out before issuing an MFR or MSR command or
unexpected shifting could be taking place. In applications such as a Web
Press, this ability to phase shift can be very useful.

MC Mode Cam

A cam is a basically round but irregular shape that rotates and causes a
follower to move up and down in a profile determined by the shape of the
cam’s exterior.

Since the beginning of industrialization, cams have been used to create
complex, reciprocating motion. Cams are most often carved out of steel and
changing them, or having them invoke motion a great distance away are
impractical. The SmartMotor provides an electronic alternative. Putting an
encoder on the rotating part of a machine, sending the signals to a SmartMotor
and programming the cam profile into the SmartMotor allows for the same
complex, repeating motions to be accomplished without any of the typical
mechanical limitations.

BASE=expression Base length

Part of defining a Cam relationship is specifying how many incoming encoder
counts there are for one full cam rotation. Simply set BASE equal to this
number.

SIZE=expression Number of Cam data entries

The upper variable array space holds the cam profile data. To instruct the
SmartMotor as to how many data points have been specified, set SIZE equal
to that number. The cam firmware looks at words (16 bit numbers). The
maximum number of words that can be used is 100. The cam firmware will
perform linear interpolation between those entries, as well as between the

ENCODER AND PULSE TRAIN FOLLOWING

48

last and the first as the cam progresses through the end of the table and back
to the beginning. The cam table entries occupy the same space as variables
aa through yyy which is the same space as the array variables. Invoking
Cam Mode is done as follows:

 BASE=2000 ‘Cam period

 SIZE=25 ‘Data segments, this defi nes the data
 table size.

 ‘CTR data, note the period at the end

 aw[0] 0 10 20 30 40 50 60 70 80 90 100 110 120 120

 110 100 90 80 70 60 50 40 30 20 10 0.

 MF0 ‘Reset external encoder to zero

 O=0 ‘Reset internal encoder position

 MC ‘Buffer CAM Mode

 G ‘Start following the external encoder
 using cam data

CI Re-Initialize Cam Parameters at next zero crossover
 (For PLUS and ServoStep firmware only)

The "Cam Initialize" command causes the buffered cam parameters to replace
the current cam parameters, including the Dwell value, upon the next Zero
Crossover. In cam mode the Dwell value is set with the D= command,
normally used to set a relative move distance.

CX Value of current Cam Index (For PLUS and ServoStep
 firmware only)

The CX variable contains the real-time cam index while in cam mode. This
enables the user to avoid the active area of the cam table when dynamically
modifying the cam table data.

F=16 Cause Cam to operate in Relative Position Mode (For
 PLUS and ServoStep firmware only)

The F variable is used to store various different operational mode bits. The
value 16 bit position is used to make cam mode operate in Relative Position
Mode, rather than the default Absolute Mode. In Relative Position Mode, the
cam table can end at a different position than it started for a progressive
advance in position with every cycle.

Because of the binary nature of the F variable, care must be taken when
setting a bit so that other bits in the F variable are not changed. The best
way to keep track of F is to keep a shadow variable, say "f" for example. To
set the 16 value bit, issue the following commands.

ENCODER AND PULSE TRAIN FOLLOWING

49

Do not use variable
aa through zzz
while camming.

Don't use the
SWITCH state-
ment with a CAM
table of SIZE=100
because the top
two memory loca-
tions are shared.

Note that when
using MC with
Step pulses, the
direction can be
reversed from
inside the
SmartMotor by
setting port B to
an output and tog-
gling its value.

50

 f=f|16 ‘Modify the Shadow Variable

 F=f ‘Set F with the Shadow Variable

To clear the 16 value bit, subtract 16 from 255 (255 - 16 = 239), then logically
AND the result with the shadow variable:

 f=f&239 ‘Modify the Shadow Variable

 F=f ‘Set F with the Shadow Variable

For more information about how binary numbers work, please refer to the
appendix.

The following is an example of using Cam Mode in Relative Position Mode.

 MF4 ‘Set external enc. in and zero ext. enc. count

 F=16 ‘Set to relative position mode in cam mode

 D=2000 ‘Set dwell in units of encoder counts

 BASE=8000 ‘Set number of ext. enc. = 1 cycle

 SIZE=8 ‘Set size - max array index

 aw[0]=0 ‘Defi ne cam table

 aw[1]=250

 aw[2]=500

 aw[3]=250

 aw[4]=0

 aw[5]=5000

 aw[6]=1000

 aw[7]=750

 aw[8]=500

 O=0 ‘Set current shaft position to zero

 MC ‘Set to mode cam

 G ‘Start mode cam

The following diagram shows how in Relative Position Mode, cam position
adopts the cycle ending point as the next cycle's starting point.

ENCODER AND PULSE TRAIN FOLLOWING

51

F=128 Set Cam to Mode Modulo (For PLUS and ServoStep
 firmware only)

Even with 32 bit position, high speed operation can cause a roll-over in the
position register after several days. To avoid this problem, F=128 will cause
both the internal position register as well as the external encoder counter to
reset to zero at the end of each combined cam and dwell cycle. This bit value
128 can be set and cleared the same way the previous example shows bit
value 16 being set and cleared.

The following example shows the results of substituting F=128 where
F=16 currently exists in the previous example:

PLUS and ServoStep Firmware allows the dynamic reprogramming of cam
mode while it is functioning. Dynamically changeable cam parameters include
Dwell (D), BASE, SIZE, multiplier MC2, MC4 and MC8. Send the new
values of BASE and/or SIZE to the motor followed by the MCn (MC, MC2,
MC4 or MC8) and CI command to begin using the new values at the next
zero-point crossing.

ENCODER AND PULSE TRAIN FOLLOWING

52

ENCODER AND PULSE TRAIN FOLLOWING

F= must have
values 16 or 128
true (on) for dwell
to be operative.

The issuance of any of the commands D= dwell 0, BASE, SIZE, MCn, or
changing F=16 or 128, after the CI command, but before the next zero point
crossing occurs, will invalidate the CI command, and no partial initialization
will take place. A new MCn and CI command must be issued.

If BASE and/or SIZE is being changed on-the-fly, it is necessary to issue an
MCn command following the new BASE and/or SIZE assignment (preceding
the CI command, of course). This is the same as when mode cam is being
started by a G. The MCn command causes the buffered cam interval length
BASE/SIZE to be calculated.

Changed values F=16 and F=128 will not take effect in cam mode, even
though the change has been made in F=, until the CI command is issued
and there is a zero-point crossing. Changing F= values on-the-fly requires
careful consideration of the effect.

The following example shows the dynamic changing of the cam function to
vary the length of material cut-off:
 F=144 ‘F=16+128, rel. (F=16), antiwrap (F=128)

 BASE=2000 ‘Quick cutoff of rough end as belt begins

 D=100 ‘Soon afterward, begin a cammed cutoff

 MC2 ‘Double-wide first cutoff

 G

 BASE=10000 ‘Normal cutoff profile

 D=107525 ‘Now allow normal length between cuts

 MC2 ‘Recalculate base/size, set to mode cam.

 CI ‘Init. cam params at zero-point crossing

 UAI ‘Input pin A button makes longer

 UBI ‘Input pin B button makes shorter

 WHILE 1

 IF UAI

 D=D+1 ‘Make longer

 MC2 ‘Recalculate base/size

 CI ‘Update at next zero point crossing

 ENDIF

 IF UBI

 D=D-1 ‘Make shorter

 MC2 ‘Recalculate base/size

 CI ‘Update at next zero point crossing

 ENDIF

 WAIT=100 ‘Max length change of 40 per second

 LOOP

53

ENCODER AND PULSE TRAIN FOLLOWING

ENC0, ENC1 Encoder Select

The ENC1 command causes the SmartMotor to servo off of an external
encoder connected to inputs A and B. This can be useful if the external
encoder has the potential of being more accurate. The ENC0 command
restores the default mode of servoing off of the internal encoder.

 ENC1 ‘Servo off of external encoder

 ENC0 ‘Servo from internal encoder (default)

While an external
encoder can have
its advantages, by
going to a wired
feedback solution
the system
sacrafices
reliability by
introducing a new
failure mode.

54

This page has been intentionally left blank.

55

SYSTEM STATE FLAGS

The following binary values can be tested by IF and WHILE control flow
expressions, or assigned to any variable. They may all be reported using
RB{bit} commands. Some may be reset using Z{bit} commands and some
are reset when accessed. The first 8 states are reported in combination
by the RS command. RW reports sixteen of these flags in combination.
Be aware that the lower 8 bits of RW do not match RS; in RS, the limits
are reported Real Time.

By writing programs to periodically test these bits, a SmartMotor application
can be very “smart” about its own inner-workings and doings.

 Bo Motor off

 Bh Excessive temperature

 Be Excessive position error

 Bw Wraparound occurred

 Bi Index report available

 Bm Real Time negative limit, aka "Left" limit, Port D

 Bp Real Time positive limit, aka "Right" limit, Port C

 Bt Trajectory in progress

 Ba Over current state occurred

 Bb Parity error occurred

 Bc Communication overflow occurred

 Bd User math overflow occurred

 Bf Communications framing error occurred

 Bk Program check sum/EEPROM failure

 Bl Historical negative limit, aka "Left" limit, Port D

 Br Historical positive limit, aka "Right" limit, Port C

 Bs Syntax error occurred

 Bu User array index error occurred

 Bx Hardware index input level

If action is taken based on some of the error flags, the flag will need to
be reset in order to look out for the next occurrence, or in some cases
depending on how the code is written, in order to keep from acting over
and over again on the same occurrence. The flags that need to be
reset are listed. Their letter designator is preceded by the letter Z in
the following list:

56

RESET SYSTEM STATE FLAGS
 Za Reset over current violation occurred

 Zb Reset parity error occurred

 Zc Reset com overflow error occurred

 Zd Reset user math overflow occurred

 Zf Reset communications framing error occurred

 Zl Reset historical left limit occurred

 Zr Reset historical right limit occurred

 Zs Reset syntax error occurred

 Zu Reset user array index error occurred

 Zw Reset wraparound occurred

 ZS Reset all Z{bit} state flags

An example of where one would use a System State Flag would be to replace
the TWAIT command. The TWAIT command pauses program execution until
motion is complete. Instead of using TWAIT, a routine could be written that
does much more. To start with, the following code example would perform
the same function as TWAIT:

 WHILE Bt ‘While trajectory
 LOOP ‘Loop back

Alternatively, the above routine could be augmented with code that took
specific action in the event of an index signal as is shown in the following
example:

 WHILE Bt ‘While trajectory
 IF Bi ‘Check index
 GOSUB500 ‘call subroutine
 ENDIF ‘end checking
 LOOP ‘Loop back

SYSTEM STATE FLAGS

G also resets
several system
state fl ags.

57

The standard SmartMotor brings out 5 volt power and ground, as well as
seven I/O points. Each one has multiple functions. They are UA, UB, UC,
UD, UE, UF and UG and have the following functions:

 UA Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 External Encoder A Input*
 Step and Direction, Step Input*

 UB Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 External Encoder B Input*
 Step and Direction, Direction Input*

 UC Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Positive Limit Input
 Alternate Brake Output (Plus Firmware)

 UD Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Negative Limit Input

 UE Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 AniLink Data I/O**
 AniLink RS-485 Signal A***

 UF Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 AniLink Clock Output**
 AniLink RS-485 Signal B***

 UG Digital Input, TTL, 0 to 5 volts
 Digital Output, TTL, 0 to 5 volts
 Analog Input, 10 bit, 0 to 1023
 Start Motion (or GO) Input
 RS-485 Adapter Direction Control
 Alternate Brake Output (Plus Firmware)

INPUTS AND OUTPUTS

***Secondary
RS-485 is not
available as stan-
dard on SMXXX5
SmartMotors or
ServoStep

*ServoStep breaks
these signals out
to different pins.
External Encoder
input is not
available as stan-
dard on SMXXX5
SmartMotors

**AniLink is not
available on
ServoStep

58

The following is a list of all of the commands used to relate to the
SmartMotor's many I/O ports, grouped by port.

THE MAIN RS-232 PORT

 ECHO ECHO back all received characters

 SADDR# Set ADDRess (0 to 120)

 SILENT Suppress print messages

 TALK Re-activate print message

 SLEEP Ignore all commands except WAKE

 WAKE Consider all following commands

 BAUD19200 Set baud rate to 19200 bps

 OCHN (RS2,0,N,9600,1,8,D) OpenChnl - RS-232, Channel 0, No
 parity, 9,600 bps, 1 stop, 8 data, as Data

 OCHN (RS4,0,N,38400,1,8,C) OpenChnl - RS-485 (w/adapter),
 Channel 0, No parity, 38.4k bps, 1 stop, 8 data,
 as Control. This uses port G for direction control

 IF LEN>0 Check to see if any (or how much) data is in the
 16 byte input buffer, Data mode

 c=GETCHR Get byte from buffer into variable c for Data
 mode

 PRINT (“Char Rcd:”,c,#13) Print text, data and ASCII code for
 carriage return

COUNTER FUNCTIONS OF PORTS A AND B

 MF4 Set Mode Follow with full quadrature

 MFR Set Mode Follow with ratio for gearing

 MS Mode Step and Direction

 MC Mode Cam

 MF0 Set follow mode to zero and increment counter only

 MS0 Set step mode to zero and increment counter only

 a=CTR Set variable a to counter value

 ENC0 Restores internal encoder as Servo Encoder

 ENC1 Redirects Servo operation to External Encoder

INPUTS AND OUTPUTS

Ports A through G
have internal 5k
Ohm pullups to 5V.

59

INPUTS AND OUTPUTS

GENERAL I/O FUNCTIONS OF PORTS A AND B

 UAI Set port A to input (UBI for port B)

 UAO Set port A to output (UBO for port B)

 UA=0 Set port A Low (UB=0 for port B, or UB=a to set to
 variable a)

 UA=1 Set port A High (UB=1 for port B)

 a=UAI Set variable a to digital input (UBI for port B)

 a=UAA or UBA Set a to analog input, 0 to 1023 = 0 to 5V

THE LIMIT PORTS C AND D

 UCI Redefine Positive, or Right Limit as general input
 (UDI for Negative, or Left Limit)

 UCO Redefine Positive, or Right Limit as general output
 (UDO for Negative or Left Limit)

 UCP Return pin to Positive, or Right limit function (UDM
 for Negative, or Left Limit function)

 LIMD Enable Directional Limits

 LIMH Limits active High (Not in PLUS or ServoStep)

 LIML Limits active Low (Not in PLUS or ServoStep)

 LIMN Restore non-directional limits (Not in PLUS or
 ServoStep)

 UC=0 Set Right Limit Low (UD=0 for Left, or UD=a to set
 to variable a)

 UC=1 Set Right Limit High (UD=1 for Left Limit)

 a=UCI or UDI Set variable a to digital input

 a=UCA or UDA Set a to analog input, 0 to 1023 = 0 to 5V

 BRKC Alternate Brake Output (Plus Firmware)

 BRKI This command will restore the brake function to the
 internal signal and free the C pin for other uses

 Zl, Zr Reset Left & Right Limit Faults (Plus and ServoStep
 Firmwares require limit faults to be reset before
 motion is allowed)

PLUS and
ServoStep
Firmware is
designed to use
normally closed
limits connected to
ground. With
nothing connected,
the motor will fault,
even on power-up.
To clear the fault,
reset the fault
condition with ZS
(or Zl and Zr).

To disable the
limits altogether,
redefi ne the limits
as general inputs
with the UCI and
UDI commands,
then clear the fault.

COMMUNICATION FUNCTIONS OF PORTS E AND F

PORTS E AND F AS ANILINK (USING I2C PROTOCOL)

 AOUTB,c Send variable c out to Analog I/O board
 addressed as B

 DOUTB0,c Send variable c out to Digital I/O board addressed
 as B0

 c=AINB2 Set variable c to input 2 from Analog I/O board
 addressed as B

 c=DINB0 Set variable c to input from Digital I/O board
 addressed as B0

 PRINTB(“Temp:”,c,#32) Print to LCD on network - text, data and
 ASCII code

PORTS E AND F AS RS-485

 OCHN(RS4,1,N,38400,1,8,D) OpenChnl - RS-485, Channel 1, No
 parity, 38.4k bps, 1 stop, 8 data, as Data

 IF LEN1>0 Check to see if data is in the 16 byte input buffer

 c=GETCHR1 Get byte from buffer into variable c

 PRINT1(“Char Rcd:”,c,#13) Print text, data and ASCII code

 ECHO1 ECHO back all received characters

 SILENT1 Suppress print messages

 SLEEP1 Ignore all commands except WAKE

 WAKE1 Consider all following commands

PORTS E AND F AS GENERAL I/O

 UEI Set port E to input (UFI for port F)

 UEO Set port E to output (UFO for port F)

 UE=0 Set port E Low (UF=0 or port F, or UF=c to set
 to variable c)

 UE=1 Set port E High (UF=1 or port F)

 c=UEI or UFI Set variable c to digital input

 c=UEA or UFA Set c to analog input, 0 to 1023 = 0 to 5V

INPUTS AND OUTPUTS

60

Secondary RS-485
functionality is not
available with the
SM2315D or the
ServoStep.

Note that the
secondary RS-485
port is non-isolated
and not properly
biased by the two
internal 5k Ohm
pullups. It is
suitable to talk to
a bar code reader
or light curtain, but
not to cascade
motors because of
the heavy biasing
and ground bounce
resulting from
variable shaft
loading.

AniLink, using I2C
protocol offers
easy digital and
analog I/O
expansion.
Simply buy I2C
chips like the
PCF8574A, and
the PCF8591.

THE G PORT

 UGI Redefine as general input

 UGO Redefine as general output (Open collector,
 pulled to 5V)

 UG Return pin to default start function, when low
 motor starts motion

 UG=0 Set G port Low (UG=a to set to variable a)

 UG=1 Set G port High (Open collector, weakly pulled
 to 5V internally)

 a=UGI Set variable a to digital input

 a=UGA Set a to analog input, 0 to 1023 = 0 to 5V

 BRKG Alternate Brake Output (Plus Firmware)

 BRKI This command will restore the brake function to the
 internal signal and free the G pin for other uses

 OCHN If the OCHN command is used to support an
 external adapter to convert the main port to
 RS-485, then the G pin becomes dedicated to that
 function, to govern data direction control

 F=64 Setting this bit in the F register will cause a high to
 low transition of the G pin to call subroutine C2,
 if it exists

 RETURNI This statement is to be placed at the end of a
 G-called C2 subroutine to return program execution
 to the main program where it was interrupted

INPUTS AND OUTPUTS

61

When BRKG is
used, do not issue
the following
commands:
 RS4
 OCHN(RS4,...
 UGI
 UG=<value>
 <variable>=UG

The G port is not
available on the
RTC-4000.

62

This page has been intentionally left blank.

63

The UAA, UBA, UCA, UDA, UEA, UFA and UGA variables reflect the analog
voltages at the port pins regardless of how the pins are configured. The
analog voltage of any pin can be read without effecting it's current mode of
operation in any way. For example, a pin could be used as an output and
then the analog input value could be read to see if it happened to be shorted,
or RS-485* signal bias could be monitored at ports E and F.

The encoder and step counting capabilities of ports A and B are described in
the section on External Encoder Modes. The serial data capabilities of ports
E and F are described in the section on communications.

While all SmartMotor I/O is confined to operate between 0
and 5VDC, some circuitry exists to accommodate spikes above
and below the operational range as long as those spikes are
moderate and short lived.

Notice by the schematic that
an I/O point can be config-
ured as an output but still be
readable as an analog input
because the connections to
the CPU are separate.

All SmartMotor I/O points default to inputs when power is applied to the
SmartMotor, until such time as the User Program makes a change. Because
of the pull-up resistor, the voltage read at each port will be about 5VDC.
When used as outputs to turn on external devices, it is highly recommended
to design the system such that +5V is OFF and 0V is ON. This will prevent
external equipment from being turned on immediately after power-up, before
the User Program has a chance to take over.

EXTERNAL RS-485 I/O

The DIN-RS-485 product adds 24 Volt I/O to applications
requiring more I/O than what the SmartMotor has built-

in. It can be connected to the SmartMotor's
secondary RS-485 port where it exists, or
to the ServoStep's primary RS-485 port.
Communications are simple and the com-
pact unit can mount on a DIN Rail inside of

a standard controls cabinet.

Knowing the
SmartMotor's
internal schematic
can be useful
when designing
external interfaces.

SmartMotor I/O is
logic 0 for voltages
below 1.2V and a
logic 1 for voltages
above 3.0V. Logic
states for voltages
between these are
unpredictable.

INPUTS AND OUTPUTS

ANILINK I/O MODULES

In the event the on-board I/O is not
enough, additional I/O can be connect-
ed via the AniLink port. A variety of
Analog and Digital I/O cards are avail-
able, as well as peripheral devices like
LCD and LED displays, push-wheel
input devices, pendants and more. These
products communicate with the SmartMotor
through the AniLink port using I2C protocol (note that
ServoStep, however, does not have an I2C port).

OUTPUT ASSIGNMENTS

 AOUT{address},exp Output byte to analog address=A-H

 DOUT{address}{ch},exp Output byte to network, address=A-H,
 ch=0-63

INPUT ASSIGNMENTS

 var=AIN{address}{input} 8 bit analog input from network,
 address=A-H, and input=1-4

 var=DIN{address}{ch} 8 bit digital in from network,
 address=A-H, and ch=0-63

LCD and LED displays offer a means for the
SmartMotor to print messages such as

instructions and error alerts. PushWheel
banks allow a user to enter numeric

data without requiring a host computer.
Together, LCD displays

and PushWeels allow
the SmartMotor to

utilize a com-
plete user inter-

face as the foun-
dation of completely

stand-alone applica-
tions. SmartMotor

based machines that are
completely independent of a host computer are

extremely reliable and "boot-up" in a couple
seconds rather than several minutes.

Some stand-alone applications can do without
a PushWheel bank where a few buttons and

switches connected to I/O are all that is needed.

INPUTS AND OUTPUTS

64

The AIO-100 Card
can add 4 analog
inputs and 1
analog output to
your I2C equipped
SmartMotor.

The DIO-100 Card
can add 8 digital
inputs or 8 digital
outpus, with control
lines to interface
with parallel
devices.

LCD Displays and
Push-Wheel banks
can complete an
entire user
interface.

65

INPUTS AND OUTPUTS

I/O CONNECTION EXAMPLES Encoders, Pots,
Switches and
Buttons are easy
to connect directly
to the
SmartMotor's I/O
pins.

I/O VOLTAGE LEVELS

SmartMotor I/O is logic 0 for voltages below 1.2V and a logic 1 for voltages
above 3.0V. Logic states for voltages between these are unpredictable.

66

Motor Connector
Pin
Identifications

INPUTS AND OUTPUTS

67

INPUTS AND OUTPUTS

Motor Connector
Locator

Please note the
Memory Module
location. In older
SmartMotors using
Molex Connectors,
this module uses
the same type of
connector as the
AniLink I/O. If a
Memory Module is
plugged into the
AniLink I/O, it won't
break, but it won't
work either.

6868

INPUTS AND OUTPUTS

INTERFACING STANDARD I/O MODULES

Animatics offers many convenient ways to connect standard
I/O modules such as those identified on the facing
page, other than simply wiring them to the
SmartMotor's TTL I/O.

The DIN-IO7 is a DIN-Rail mountable platform
on which can be mounted up to 7 standard I/O
modules. This device conveniently connects to
all SmartMotors and can dramatically simplify the
wiring of applications requiring this capability. This
interfacing means can take advantage of Analog I/O.

SmartMotors other than ServoStep are equipped with I2C
capability in their AniLink ports. These

motors can connect to plat-
forms that hold as many as
16 standard I/O modules for
the most demanding appli-

cations.

The 5 Volt Logic
of the SmartMotor
can interface to
24 Volt devices
through the use of
standard interface
modules.

69

While there are a variety of options, the default mode for communicating with
a SmartMotor is serial RS-232 for the main port, except for the ServoStep
who's main port is Isolated RS-485. Most SmartMotors are equipped with
a secondary serial port called the AniLink port. The AniLink port on a
SmartMotor can be configured to communicate with either RS-485 or I2C.
The I2C connects SmartMotor peripherals like LCD displays, I/O cards, etc.,
while the RS-485 will interface bar code readers, light curtains, and other
“intelligent” peripherals including other SmartMotors if desired. SmartMotor
models SMXXX5 do not have RS-485 capability in their AniLink ports. Series
4 ServoStep motors have neither secondary RS-485 nor AniLink.

To maximize the flexibility of the SmartMotor, all serial communications ports
are fully programmable with regard to bit-rate and protocol.

There is a sixteen-byte input buffer for the primary port and another for
the secondary RS-485 port where it exists. These buffers ensure that no
arriving information is ever lost, although when either port is in data mode,
it is the responsibility of the user program within the SmartMotor to keep
up with the incoming data.

By default, the primary channel, which shares a connector with the incoming
power in some versions, is set up as a command port with the following
default characteristics:

 Default: Other Options:
 Type: RS-232 RS-485 (w/adapter or ServoStep)
 Parity: None Odd or Even
 Bit Rate: 9600 2400 to 38400
 Stop Bits: 1 0 or 2
 Data Bits: 8 7
 Mode: Command Data
 Echo: Off On

If the cable used is not provided by Animatics, make sure the SmartMotor's
power and RS-232 connections are correct. RS-232 SmartMotors connect as
follows (look further for RS-485 SmartMotors and ServoSteps):

COMMUNICATIONS

When using I2C,
the SmartMotor is
always the bus
master. You cannot
communicate
between
SmartMotors via
I2C.

The CBLSM1-10
makes quick work
of connecting to
your fi rst RS-232
based SmartMotor.

Because of the buffers on both sides there is no need for any hand shaking
protocol when commanding the SmartMotor. Most commands execute in
less time than it would take to receive the next one. Be careful to allow
processes time to complete, particularly relatively slow processes like printing
to a connected LCD display or executing a full subroutine. Since the EEPROM
long term memory is slow to write, the terminal software does employ two way
communication to regulate the download of a new program.

DAISY CHAINING RS-232

Multiple SmartMotors can be connected to a single RS-232 port as shown
(For ServoStep, see Communicating over RS-485 further on)

This diagram could be expanded to as many as 120 motors. For independent
motion, however, each motor must be programmed with a unique address.
In a multiple motor system the programmer has the choice of putting a
host computer in control or having the first motor in the chain be in control
of the rest.

SADDR# Set motor to new address

The SADDR# command causes a SmartMotor to respond exclusively to
commands addressed to it. The range of address numbers is from 1 to 120.
Once each motor in a chain has a unique address, each individual motor will
communicate normally after its address is sent at least once over the chain.
To send an address, add 128 to its value and output the binary result over
the communication link. This puts the value above the ASCII character set,
quickly and easily differentiating it from all other commands or data. The
address needs to be sent only once until the host computer, or motor, wants

COMMUNICATIONS

70

You can create
your own RS-232
Daisy Chain cable
or purchase Add-
A-Motor Cables
from Animatics.

Be sure to use
shielded cable to
connect RS-232
ports together, with
the shield ground
connected to
ground (pin 5) of
the PC end only.

to change it to something else. Sending out an
address zero (128) will cause all motors to listen
and is a great way to send global data such as
a G for starting simultaneous motion in a chain.
Once set, the address features work the same
for RS-232 and RS-485 communications.

Unlike the RS-485 star topology, the con-
secutive nature of the RS-232 daisy-chain
creates the opportunity for the chain to
be independently addressed entirely from
the host, rather than by having a uniquely
addressed program in each motor. Setting up a
system this way can add simplicity because the program in each motor can
be exactly the same. If the RUN? Command is the first in each of the motor’s
programs, the programs will not start upon power up. Addressing can be
worked out by the host prior to the programs being started later by the host
sending the RUN command globally.

SLEEP, SLEEP1 Assert sleep mode

WAKE, WAKE1 De-assert SLEEP

Telling a motor to sleep causes it to ignore all commands except the WAKE
command. This feature can often be useful, particularly when establishing
unique addresses in a chain of motors. The 1 at the end of the commands
specify the AniLink RS-485 port (not available in SM2315D and ServoStep).

ECHO, ECHO1 ECHO input

ECHO_OFF, ECHO_OFF1 De-assert ECHO

The ECHO and ECHO_OFF commands toggle the echoing of data input.
Because the motors do not echo character input by default, consecutive
commands can be presented, configuring them with unique addresses, one
at a time. If the host computer or controller sent out the following command
sequence, each motor would have a unique and consecutive address.

COMMUNICATIONS

71

SmartMotors can
be made to
automatically
ECHO received
characters to the
next SmartMotor in
a Daisy Chain.

Fully Molded Add-
A-Motor cables
make quick work
of daisy chaining
multiple motors
over an RS-232
network.

Large size 23 or
size 34
SmartMotors draw
so much power
that reliable
communications
often require an
Isolated
communications.
For such
applications,
consider using the
Animatics DIN Rail
RS-232 fanout:

If a daisy chain of SmartMotors have been powered off and back on, the
following commands can be entered into the SmartMotor Interface to address
the motors (0 equals 128, 1 equals 129, etc.). Some delay should be inserted
between commands when sending them from a host computer.

 0SADDR1
 1ECHO
 1SLEEP
 0SADDR2
 2ECHO
 2SLEEP
 0SADDR3
 3ECHO
 0WAKE

Commanded by a user program in the first motor, instead of a host, the same
daisy chain could be addressed with the following sequence:

 SADDR1 'Address the first motor
 ECHO 'Echo for host data
 PRINT(#128,“SADDR2”,#13) '0SADDR2
 WAIT=10 'Allow time
 PRINT(#130,“ECHO”,#13) '2ECHO
 WAIT=10
 PRINT(#130,“SLEEP”,#13) '2SLEEP
 WAIT=10
 PRINT(#128,“SADDR3”,#13) '0SADDR3
 WAIT=10
 PRINT(#131,“ECHO”,#13) '3ECHO
 WAIT=10
 PRINT(#128,“WAKE”,#13) '0WAKE
 WAIT=10

COMMUNICATING OVER RS-485

Multiple ServoStep SmartMotors can be connected to a single host port
by connecting their RS-485 A signals together and B signals together and
then connecting them to an RS-485 port or an adaptor to RS-232 or USB.
Adapters provided by Animatics have built-in biasing resistors, but extensive
networks should add bias at the very last motor in the chain. The A and
B RS-485 signals in the ServoStep are isolated, making them immune to
ground bounce. Proper cabling would include a shielded twisted pair for
transmission.

The two communications ports have enormous flexibility. To select from the
vast array of options, use the OCHN command.

COMMUNICATIONS

72

Never use ECHO
with ServoStep
SmartMotors or
you will crash the
RS-485 bus.

Plug any
ServoStep into a
standard PC port
using the
RS-232485 or the
USB-232485
Adapter.

OCHN
 Options:
 Type: RS2, RS4 RS-232 or RS-485
 Channel: 0, 1 or 2 0=Main, 1=AniLink
 Parity: N, O or E None, Odd or Even
 Bit rate: 2400, 4800, 9600, 19200, 38400 baud
 Stop bits: 0, 1 or 2
 Data bits: 7 or 8
 Mode: C or D Command or Data

Here is an example of the OCHN command:

 OCHN(RS4,0,N,38400,1,8,D)

COMMUNICATIONS

73

The cable diagram
to the left does not
show the required
shielding. To protect
communications,
shield the twisted-
pair RS-485 signals,
grounding the shield
only at the Adapter.
An additional shield
around Drive Power
will greatly reduce
emissions.

Molded cable
assemblies make
wiring simple and
reliable for
ServoStep
SmartMotors.

If the primary communication channel (0) is opened
as an RS-485 port, it will assume the RS-485
adapter is connected to it. If that is the case
then pin G in the same connector is assigned
the task of directing the adapter to be in
Transmit or Receive mode in accordance with
the motor’s communication activity and will no
longer be useful as an I/O port to the outside.

CCHN(type,channel) Close a communications channel

Use the CCHN command to close a communications port when desired.

BAUD# Set BAUD rate of main port

The BAUD# command presents a convenient way of changing only the bit
rate of the main channel. The number can be from 2400 to 38400 bps.

PRINT(), PRINT1() Print to RS-232 or AniLink channel

A variety of data formats can exist within the parentheses of the PRINT()
command. A text string is marked as such by enclosing it between double
quotation marks. Variables can be placed between the parentheses as well
as two variables separated by one operator. To send out a specific byte
value, prefix the value with the # sign and represent the value with as many
as three decimal digits ranging from 0 to 255. Multiple types of data can be
sent in a single PRINT() statement by separating the entries with commas.
Do not use spaces outside of text strings because SmartMotors use spaces
as delimiters along with carriage returns and line feeds.

The following are all valid print statements and will transmit data through
the main RS-232 channel:

 PRINT(“Hello World”) ‘text
 PRINT(a*b) ‘exp.
 PRINT(#32) ‘data
 PRINT(“A”,a,a*b,#13) ‘all

PRINT1 prints to the AniLink port with RS-485 protocol while PRINTA prints
to the AniLink port using I2C protocol in such a way as to send data to an
LCD display or standard parallel input line printer (with a DIO-100 card on
the AniLink bus).

SILENT, SILENT1 Suppress PRINT() outputs

TALK, TALK1 De-assert silent mode

The SILENT mode causes all PRINT() output to be suppressed. This is
useful when talking to a chain of motors from a host, when the chain would
otherwise be talking within itself because of programs executing that contain

COMMUNICATIONS

74

The Main Port of
the ServoStep is
standard RS-485
and requires no
adapter.

PRINT() commands.

! Wait for character to be received

A single exclamation mark will cause program execution to stop until a
character is received. This can be handy under certain circumstances like
debugging a program in real time.

The following is a very useful routine for confirming RS-232 noise. Start the
program from the SMI terminal and then sequentially activate and deactivate
every other system in the machine while watching the terminal window. If
the SmartMotor gets so much as a single byte of noise, the program will
advance to the print statement:

 WHILE 1 ‘Loop Forever
 ! ‘Hold until anything received
 PRINT("Noise Detected",#13) ‘Print Message
 LOOP ‘Loop back to WHILE

a=CHN0, a=CHN1 Communications error flags

The CHN0 and CHN1 variables hold binary coded information about the
historical errors experienced by the two communications channels. The
information is as follows:

 Bit Value Meaning

 0 1 Buffer overflow
 1 2 Framing error
 2 4 Command scan error
 3 8 Parity error

A subroutine that printed the errors to an LCD display would look like the
following:
 C911
 IF CHN0 ‘If CHN0 != 0
 DOUT0,1 ‘Home LCD cursor
 IF CHN0&1
 PRINTA(“BUFFER OVERFLOW”)
 ENDIF
 IF CHN0&2
 PRINTA(“FRAMING ERROR”)
 ENDIF
 IF CHN0&4
 PRINTA(“COMMAND SCAN ERROR”)
 ENDIF
 IF CHN0&8
 PRINTA(“PARITY ERROR”)
 ENDIF

COMMUNICATIONS

75

76

COMMUNICATIONS

 CHN0=0 ‘Reset CHN0
 ENDIF
 RETURN

a=ADDR Motor’s self address

If the motor’s address (ADDR) is set by an external source, it may still be
useful for the program in the motor to know what address it is set to. When
a motor is set to an address, the ADDR variable will reflect that address
from 1 to 120.

GETTING DATA FROM A COM PORT

If a com port is in Command Mode, then the motor will simply respond to
arriving commands it recognizes. If the port is opened in Data Mode, however,
then incoming data will start to fill the 16 byte buffer until it is retrieved with
the GETCHR command.

 a=LEN Number of characters in RS-232 buffer
 a=LEN1 Number of characters in RS-485 buffer
 a=GETCHR Get character from RS-232 buffer
 a=GETCHR1 Get character from RS-485 buffer

The buffer is a standard FIFO (First In First Out) buffer. This means that if the
letter A is the first character the buffer receives, then it will be the first byte
offered to the GETCHR command. The buffer exists to make sure that no
data is lost, even if the program is not retrieving the data at just the right
time. Two things are very important when dealing with a data buffer for
the protection of the data:

 1) Never GETCHR if there is no CHR to GET.
 2) Never let the buffer overflow.

The LEN variable holds the number of characters in the buffer. A program
must see that the LEN is greater than zero before issuing a command like:
a=GETCHR. Likewise, it is necessary to arrange the application so that,
overall, data will be pulled out of the buffer as fast as it comes in.

The ability to configure the communication ports for any protocol as well as
to both transmit and receive data allows the SmartMotor to interface to a vast
array of RS-232 and RS-485 devices. Some of the typical devices that would
interface with SmartMotors over the communication interface are:

 1) Other SmartMotors
 2) Bar Code Readers
 3) Light Curtains
 4) Terminals
 5) Printers

The following is an example program that repeatedly transmits a message to

77

COMMUNICATIONS

an external device (in this case another SmartMotor) and then takes a number
back from the device as a series of ASCII letter digits, each ranging from 0
to 9. A carriage return character will mark the end of the received data. The
program will use that data as a position to move to.

 A=500 ‘Preset Accel.
 V=1000000 ‘Preset Vel.
 P=0 ‘Zero out Pos.
 O=0 ‘Declare origin
 G ‘Servo in place
 OCHN(RS2,0,N,9600,1,8,D)
 PRINT(“RP”,#13)
 C0
 IF LEN ‘Check for chars
 a=GETCHR ‘Get char
 IF a==13 ‘If carriage return
 G ‘Start motion
 P=0 ‘Reset buffered P to zero
 PRINT(“RP”,#13) ‘Next
 ELSE
 P=P*10 ‘Shift buffered P
 a=a-48 ‘Adjust for ASCII
 P=P+a ‘Build buffered P
 ENDIF
 ENDIF
 GOTO0 ‘Loop forever

The ASCII code for zero is 48. The other nine digits count up from there so
the ASCII code can be converted to a useful number by subtracting the value
of 0 (ASCII 48). The example assumes that the most significant digits will be
returned first. Any time it sees a new digit, it multiplies the previous quantity
by 10 to shift it over and then adds the new digit as the least significant. Once
a carriage return is seen (ASCII 13), motion starts. After motion is started, P
(Position) is reset to zero in preparation for building up again. P is buffered
so it will not do anything until the G command is issued.

78

This page has been intentionally left blank.

79

PID FILTER CONTROL
The SmartMotor™ includes a very high quality, high performance brushless
D.C. servomotor. It has a rotor with extremely powerful rare earth magnets
and a stator (the outside, stationary part) that is a densely wound multi-slotted
electro-magnet.

Controlling the position of a brushless D.C. servo’s rotor with only electro-
magnetism working as a lever is like pulling a sled with a rubber band.
Accurate control would seem impossible.

The parameters that makes it all work are found in the PID (Proportional,
Integral, Derivative) filter section. These are the three fundamental coefficients
to a mathematical algorithm that intelligently recalculates and delivers the
power needed by the motor about 4,000 times per second. The input to the
PID filter is the instantaneous actual position minus the desired position, be it
at rest, or part of an ongoing trajectory. This difference is called the error.

The Proportional parameter of the filter creates a simple spring constant. The
further the shaft is rotated away from its target position, the more power is
delivered to return it. With this as the only parameter the motor shaft would
respond just as the end of a spring would if it was grabbed and twisted.

If the spring is twisted and let go it will vibrate wildly. This sort of vibration is
hazardous to most mechanisms. In this scenario a shock absorber is added to
cancel the vibrations which is the equivalent of what the Derivative parameter
does. If a person sat on the fender of a car, it would dip down because of
the additional weight based on the constant of the car’s spring. It would not
be known if the shocks were good or bad. If the bumper was jumped up
and down on, however, it would quickly become apparent whether the shock
absorbers were working or not. That’s because they are not activated by
position but rather by speed. The Derivative parameter steals power away as
a function of the rate of change of the overall filter output. The parameter gets
its name from the fact that the derivative of position is speed. Electronically
stealing power based on the magnitude of the motor shafts vibration has the
same effect as putting a shock absorber in the system, and the algorithm
never goes bad.

Even with the two parameters a situation can arise that will cause the servo
to leave its target created by “dead weight”. If a constant torque is applied
to the end of the shaft, the shaft will comply until the deflection causes the
Proportional parameter to rise to the equivalent torque. There is no speed so
the Derivative parameter has no effect. As long as the torque is there, the
motor’s shaft will be off of its target.

That’s where the Integral parameter comes in. The Integral parameter mounts
an opposing force that is a function of time. As time passes and there is
a deflection present, the Integral parameter will add a little force to bring it
back on target with each PID cycle. There is also a separate parameter
(KL) used to limit the Integral parameter’s scope of what it can do so as
not to over react.

Each of these parameters have their own scaling factor to tailor the overall
performance of the filter to the specific load conditions of any one particular

THE PID FILTER

While the
Derivative term
usually acts to
dampen
instability, this is
not the true
defi nition of the
term. It is possible
to cause instability
by setting the
Derivative term
too high.

The PID filter is
OFF during Torque
Mode.

application. The scaling factors are as follows:

 KP Proportional

 KI Integral

 KD Derivative

 KL Integral Limit

TUNING THE PID FILTER
The task of tuning the filter is complicated by the fact that the parameters
are so interdependent. A change in one can shift the optimal settings of the
others. The automatic utility makes all of the settings easy, but it still may be
necessary to know how to tune a servo.

When tuning the motor it is useful to have the status monitor running which will
monitor various bits of information that will reflect the motors performance.

 KP=exp Set KP, proportional coefficient

 KI=exp Set KI, time-error coefficient

 KD=exp Set KD, damping coefficient

 KL=exp Set KL, time-error term limit

 F Update PID filter

The main objective in tuning a servo is to get KP as high as possible, while
maintaining stability. The higher the KP the stiffer the system and the more
under control it is. A good start is to simply query what to begin with (RKP)
and then start increasing it 10% to 20% at a time. It is a good idea to start with
KI equal to zero. Keep in mind that the new settings do not take effect until
the F command is issued. Each time KP is raised, try physically to destabilize
the system, by bumping or twisting it. Or, have a program loop cycling that
invokes abrupt motions. As long as the motor always settles to a quiet rest,
keep raising KP. Of course if the SMI Tuning Utility is being used, it will
employ a step function and show more precisely what the reaction is.

As soon as the limit is reached, find the appropriate derivative compensation.
Move KD up and down until the position is found that gives the quickest
stability. If KD is way too high, there will be a grinding sound. It is not really
grinding, but it is a sign to go the other way. A good tune is not only stable,
but reasonably quiet. After optimizing KD, it may be possible to raise KP a
little more. Keep going back and forth until there's nothing left to improve the
stiffness of the system. After that it's time to take a look at KI.

KI, in most cases, is used to compensate for friction. Without it the SmartMotor
will never exactly reach the target. Begin with KI equal to zero and KL equal
to 1000. Move the motor off target and start increasing KI and KL. Keep KL
at least ten times KI during this phase.

THE PID FILTER

80

Refer to the
section: SMI
Advanced
Functions to
learn more about
the SMI Tuner and
how it can help
tune the
SmartMotor.

In most cases, it
is unnecessary to
tune ServoSteps.
They are factory
tuned, and stable
in virtually any
application.

Continue to increase KI until the motor always reaches its target, and once
that happens add about 30% to KI and start bringing down KL until it hampers
the ability for the KI term to close the position precisely to target. Once that
point is reached, increase KL by about 30% as well. The Integral term needs
to be strong enough to overcome friction, but the limit needs to be set so that
an unruly amount of power will not be delivered if the mechanism were to jam
or simply find itself against one of its ends of travel.

E=expression Set maximum position error

The difference between where the motor shaft is and where it is supposed
to be is appropriately called the “error”. The magnitude and sign of the error
is delivered to the motor in the form of torque, after it is put through the PID
filter. The higher the error, the more out of control the motor is. Therefore, it
is often useful to put a limit on the allowable error, after which time the motor
will be turned off. That is what the E command is for. It defaults to 1000
encoder counts, but can be set from 1 to 32,000.

There are still more parameters that can be utilized to reduce the position error
of a dynamic application. Most of the forces that aggravate a PID loop through
the execution of a motion trajectory are unpredictable, but there are some that
can be predicted and further eliminated preemptively.

KG=expression Set KG, Gravity offset term

The simplest of these is gravity. Why burden the PID loop with the effects of
gravity in a vertical load application, if it can simply be weeded out. If in a
particular application, motion would occur with the power off due to gravity,
a constant offset can be incorporated into the filter to balance the system.
KG is the term. KG can range from -8388608 to 8388607. To tune
KG, simply make changes to KG until the load equally favors upward and
downward motion.

KV=expression Set KVff, velocity feed forward

Another predictable cause of position error is the natural latency of the PID
loop itself. At higher speeds, because the calculation takes a finite amount of
time, the result is somewhat “old news”. The higher the speed, the more the
actual motor position will slightly lag the trajectory calculated position. This
can be programmed out with the KV term. KV can range from zero to 65,535.
Typical values range in the low hundreds. To tune KV simply run the motor at
a constant speed, if the application will allow, and increase KV until the error
gets reduced to near zero and stays there. The error can be seen in real time
by activating the Monitor Status window in the SMI program.

THE PID FILTER

81

KV and KA have
no effect in MS of
MF follow modes.

KA=expression Set KAff, acceleration feed forward

Force equals mass times acceleration. If the SmartMotor is accelerating
a mass, it will be exerting a force during that acceleration. This force will
disappear immediately upon reaching the cruising speed. This momentary
torque during acceleration is also predictable and need not aggravate the PID
filter. It’s effects can be programmed out with the KA term. It is a little more
difficult to tune KA, especially with hardware attached. The objective is to
arrive at a value that will close the position error during the acceleration and
deceleration phases. It is better to tune KA with KI set to zero because
KI will address this constant force in another way. It is best to have KA
address 100% of the forces due to acceleration, and leave the KI term to
adjust for friction.

KS=expression Set KS, dampening sample rate

Reduce the sampling rate of the derivative term, KD, with the KS term.
This can sometimes add stability to very high inertial loads. Useful values
of KS range from 1 (the default) to 20. Results will vary from application
to application.

The PID rate of the SmartMotor can be slowed down.

PID1 Set normal PID update rate

PID2 Divide normal PID update rate by 2

PID4 Divide normal PID update rate by 4

PID8 Divide normal PID update rate by 8

The trajectory and PID filter calculations occur within the SmartMotor™ 4069
times per second. That is faster than is necessary for very good control,
especially with the larger motors. A reduction in the PID rate can result in an
increase in the SmartMotor™ application program execution rate. The PID2
command will divide the PID rate by two, and the others even more. The
most dramatic effect on program execution rate occurs with PID4. PID8 does
little more and is encroaching upon poor control. If the PID rate is lowered,
keep in mind that this is the “sample” rate that is the basis for Velocity values,
Acceleration values, PID coefficients and WAIT times. If the rate is cut in half,
expect to do the following to keep all else the same:

 Halve WAIT times

 Double Velocity

 Increase Acceleration by a factor of 4

KGON Change Drive Characteristic for Vertical Application
 (no longer supported, see F= mode register)

KGOFF Restore Drive Characteristic to Default
 (no longer supported, see F= mode register)

THE PID FILTER

82

A reduction in the
PID rate can result
in an increase in
the SmartMotor™
application pro-
gram execution
rate.

Providing proper
care is taken to
keep the PID filter
stable, the PID#
command can be
issued on-the-fly.

CURRENT LIMIT CONTROL
AMPS=expression Set current limit, 0 to 1023

In some applications, if the motor misapplied full power, the attached
mechanism could be damaged. It can be useful to reduce the maximum
amount of current available thus limiting the torque the motor can put out. Use
the AMPS command with a number, variable or expression within the range
of 0 to 1023. The units are tenths of a percent of full scale peak current, and
varies in actual torque with the size of the SmartMotor.

Current is limited by limiting the maximum PWM duty cycle. For this reason,
it will reduce the maximum speed of the motor as well. The AMPS command
has no effect in Torque Mode.

THE PID FILTER

83

84

This page has been intentionally left blank.

85

SMI SOFTWARE
The Quick Start section of this guide describes the minimum SMI functionality neces-
sary to talk to SmartMotors as well as create, download and test SmartMotor programs.
SMI as a whole, however, has much greater capability.

SMI PROJECTS
In applications with more than one
SmartMotor and possibly more than
one program or communications port,
it is helpful to organize all of the ele-
ments as a PROJECT, rather than
deal with individual files. Projects
can be created from the FILE menu.
When starting a new project, you have
the option of SMI2 exploring the net-
work of motors and setting up the
project automatically, or to do it manu-
ally by double clicking on the specific communication ports or motors exhibited in the
Information Window.

TERMINAL WINDOW
The Terminal Window acts as a Real Time portal between you and the SmartMotor.
By typing commands in the Terminal, you can set up and execute trajectories, execute
subroutines of downloaded programs and request data to be reported back.

Specific Communication
Ports can be selected using
the tabs. If multiple
SmartMotors are on a single
Communication Port and
individually addressed, com-
mands can be routed to any
or all of them by making the
appropriate selection from
the pull-down menu just
below the tabs. The SMI pro-

gram will automatically send the appropriate codes to the network to route the data to
the intended motors. Commands can be entered in the white text window or the blue
screen. If data is flooding back from the motor, then the white text window will be more
convenient.

PRINT Statements containing data can be sprinkled in programs to send data up to
the Terminal Window as an aid to debugging. Data with associated report commands
like Position with the "RP" command can be more easily reported by simply putting the
report command in the program code. Be careful in tight loops because they can bom-
bard the Terminal Window with too much data. Try putting in a WAIT=50 command. The
Terminal Window has a scroll feature that allows the user to review history.

SMI ADVANCED FUNCTIONS

When working with
multiple motors,
programs or ports,
creating a PROJECT
can be a great way of
organizing and using
all of the individual
elements.

86

CONFIGURATION WINDOW
The Configuration Window both shows the current configuration and allows access to
specific ports and motors to alter properties. Press "Find Motors", or the Address Button

to detect and analyze your system. Once that is
accomplished, you can double click on any port
to get instant access to its properties. You can
also double click on any motor to immediately
bring up the "Motor View" tool for that motor.
By Right Clicking the motor, you have immedi-
ate and convenient access to its properties along
with various other tools.

The Configuration Window is essential to
keeping multiple-SmartMotor systems organized,
especially in the context of developing multiple
programs and debugging their operation.

PROGRAM EDITOR
SmartMotor programs are written in the SMI Program Editor before being scanned for
errors and downloaded to the motor. To get the Program Editor to appear, simply
go to the FILE menu and select NEW or simply press the button on the toolbar.
As you write your program, the
editor will highlight commands it
recognizes in different colors.

It is generally good practice to
indent program loops by two
spaces for readability. Comments
are made invisible to the syntax
scanner by preceding them with
a single quotation mark.

Every program requires and END,
even if the program is designed
to run indefinitely and the END is
never reached.

The first time you write a pro-
gram, you must save it before
you can download it to the motor. Every time a program is downloaded, it is automati-
cally saved to that file name. This point is important to note as most Windows applica-
tions require an overt save. If you want to set aside a certain revision of the program,
it should be copied and renamed, or you should simply save the continued work under
a new name.

Once a program is complete, you can simply scan it for errors by pressing the button
on the toolbar or scan and download it at one time by pressing the button. If errors
are found, the download will be aborted and the problems will be identified in the Infor-
mation WIndow located at the bottom of the screen.

SMI ADVANCED FUNCTIONS

The
Confi guration
Window is
essential to
keeping multiple-
SmartMotor
systems
organized.

87

SMI ADVANCED FUNCTIONS

INFORMATION WINDOW

The Information Window shows program status. When a program is scanned and
errors are found, they are listed in the Information Window preceded by an .

By double clicking on the error
in the Information Window, the
specific error will be located in
the Program Editor and under-
lined. In the example below, the
scanner does not recognize the
command TWAITS. The correct
command is TWAIT.

You can correct the error and
press the button again. Once
all errors are cleared, the pro-
gram can be downloaded to the
SmartMotor.

Warnings may appear in the
Information Window to alert you

to potential problems, but warnings will not prevent the program from being downloaded
to the SmartMotor. It is the programmer's responsibility to determine the importance of
addressing the warnings.

SERIAL DATA ANALYZER
The SMI Terminal Window formats text and performs other housekeeping functions
that are invisible to the user. For an exact picture of what data is being traded
between the P.C. and the SmartMotor, press the button and the Serial Data Ana-
lyzer Window will appear.

Program Errors
can be located
instantly by
double-clicking on
the error listed in
the Information
Window.

SMI can display
the precise data
being sent back
and forth between
the host and the
SmartMotor, in
multiple formats.

88

The can display serial data in a variety of formats and can be a useful tool in debugging
communications. For non-intrusive "sniffing" of data, a special cable can be configured
to connect the host receive pin and ground to the data channel to be monitored.

MOTOR VIEW
The SMI Motor View WIndow enables the user to view multiple parameters related to
the motor, in real time. It is most conveniently accessible by double clicking the motor
of interest in the configuration
window.

Press the "Poll" button to ini-
tiate the real-time scanning of
motor parameters.

A program can be running in
the motor while the MotorView
Window is polling so long as
the program itself does not print
text to the serial channel being
used for the polling.

In addition to the standard
items displayed, there are two
fields that allow the user to
select from a list of additional
parameters to display. In the
example here, Voltage and Cur-
rent are polled. This informa-
tion can be useful when setting
up a system for the first time,
or debugging a system in the
field. Temperature is also useful to monitor in applications with demanding loads. All
seven of the user-configurable I/O points are shown. Any I/O that is configured as an
output can be toggled by clicking on the dot below the designating letter.

Newer SmartMotors have built-in provisions to allow them to be identified by the SMI
software. If a motor is identified, a picture of it will appear in the lower left corner of the
MotorView Window. Tabs across the top offer a wealth of additional information.

THE SMI MONITOR WINDOW
If you want maximum speed and you are interested in only a small number of very
specific items, the SMI Monitor WIndow allows you to create your own fully custom

monitor. You can find the Monitor Window
by going to the Tools menu and selecting
"Monitor View".

Polling items can be added by pressing the
 button. The "Add new Monitor Item"

window will appear and offer special fields
for every portion of the monitoring function.

To monitor items that do not have explicit

MotorView
provides a window
into the inter
workings of a
SmartMotor, in
Real-Time.

SMI ADVANCED FUNCTIONS

89

report commands, fully custom items can be added by entering the specific commands
appropriate to getting the data reported, like making a variable equal to the parameter
and then reporting the variable for example.

CHART VIEW
For Graphical Monitoring of data, go to the Tools Menu and select Chart View.

Like the Monitor View Window,
polling items for Chart View can
be added by pressing the
button.

The Fields and Options are iden-
tical to those from the Monitor
tool.

Adjustable upper and lower
limits for each polled parameter
allow them to be scaled to fit the
space.

The toolbar across the top pro-
vides multiple additional func-
tions that are described by
holding the cursor over them
(without clicking)

Press the button to start the
charting action.

While Chart View does not have
an intrinsic printing function for
a paper copy, Window's stan-
dard "Print Screen" key can cap-
ture the graph to be pasted into

any standard paint package. Not only is Chart View a very useful tool to see the behav-
ior of the different motion parameters, but its graphical data can be a useful addition to
written system reports.

MACROS
For the SMI User's convenience, the programmer can associate a command or series of
commands with a Ctrl-# key. This is done by selecting "Macro.." from the Tool Menu.

Sometimes, the
best way to
understand a data
trend is by seeing
it graphically. The
SMI Chart View
provides Graphical
Access to any
readable
SmartMotor
parameter.

SMI ADVANCED FUNCTIONS

90

To add a macro, start by pressing the ADD button in the Macro Window.

Enter a name for the Macro,
select a Control Key and pro-
vide a simple description of
the macro. Then type the
command or commands in
the window provided.

When this is complete, press
the OK button. You will again
be presented with the Macro
window. Click once on the
macro you have written and
press the "RUN" button in the
Macro window to test it.

If you are happy with the
results, you can press the

"Close" button, whereas if you want to edit the Macro, press the "Properties" button
instead. With this utility, you can create multiple macros to make the development of
your products quicker and easier.

TUNER
Tuning a SmartMotor is far more simple than tuning traditional servos, but it can be even
easier using the SMI Tuner to see the actual results of different tuning parameters.

For information on how to tune a SmartMotor, refer to the preceding section "The PID
Filter". Each SmartMotor has very soft default tuning. Increasing the stiffness of that
tuning can increase the accuracy of the machine the SmartMotor is controlling. To bring

SMI ADVANCED FUNCTIONS

91

up the SMI Tuner, select "Tuner" from the SMI Tools Menu.

The Tuner shows the Step Response of the SmartMotor, graphically. The Step Response
is the SmartMotors actual reaction to the request for a small but instantaneous change in
position. Rotor Inertia prevents the SmartMotor from changing its position in zero time,
but how valiant the effort is shows a lot about how well in-tune the motor is.

Before running the Tuner, be sure the motor, and what ever it is connected to is free
to move about 1000 encoder counts or
more, and that the device is able to safely
withstand an abrupt jolt. If that is the
case, then press the "Run Tuning" button
at the bottom of the Tuning Window. If
the SmartMotor was connected, on and
still, you should see something like what
is depicted to the right. The upper curve
with the legend on the left is the Smart-
Motor's actual position over time. Notice
that it overshot its target position before
settling in.

This is the soft default tuning for an
SM2315D at 24V. Exercising the proce-
dure outlined in the preceding section on
PID Tuning will stiffen the motor up and create less overshoot. Bear in mind that in
a real-world application, there will be an acceleration profile, not a demand for instan-
taneous displacement and so significant overshoot will not exist. Never the less, it is

useful to look at the "worst case sce-
nario" of a Step Response.

To try a different set of tuning param-
eters, select the "Tuning values" tab
to the left of the graph area. You will
see a list of the existing tuning param-
eters with two columns. The one on
the left lists what is currently in the
SmartMotor. The column to the right
provides an area to make changes.

In this example, we change KP to
250 and KD to 1500, then clicked the
"Apply new values" button.

Now, these new values are in the
SmartMotor and we can execute the
test of another Step Response by

pressing the "Run tuner" button at the bottom of the Tuning Window. The motor will jolt
again and the results of the Step Response will overwrite the previous graph.

Normally, this process involves repeated trials, again, exercising the procedure outlined
in the previous section on "The PID Filter".

In this example, we stiffened up the tuning by raising KP and increased the KD (or damp-
ening) to keep the motor stable.

SMI ADVANCED FUNCTIONS

92

The results are a significant reduction in Overshoot as seen in the graph.

Once you are happy with the results, the best parameters can be added to the top of
your program in the SmartMotor, or in applications where there are no programs in the
motors, sent by a host after each power-up. Whether from a host, or in a program, the
tuning parameters would be set using the tuning commands:

 KP=250
 KI=28
 KD=1500
 KL=20
 F

SMI OPTIONS
The SMI Terminal Software can be customized in general by way of the Options choice
in the Tools menu.

A key option to consider is the Firmware Version. Since different SmartMotor firmware
have subtle differences, the program scanner needs to know which firmware is being uti-
lized so it can know what are legal commands and what are commands that are unsup-
ported.

Other adjustable options go more to the issues of preferences.

SMI HELP
The most complete and up-to-date information available for SMI functions is available
within the programs extensive HELP facility. The easiest way to get instant access to
help on any feature is by clicking on the button in the main toolbar. After clicking on

SMI ADVANCED FUNCTIONS

93

the button, click on the item you want to learn about and information will be presented
on that item.

SMI ADVANCED FUNCTIONS

94

This page has been intentionally left blank.

95

ASCII is an acronym for American Standard Code for Information Interchange.
It refers to the convention established to relate characters, symbols and
functions to binary data. If a SmartMotor is asked its position over the RS-232
link, and it is at position 1, it will not return a byte of value one, but instead will
return the ASCII code for 1 which is binary value 49. That is why it appears
on a terminal screen as the numeral 1.

The ASCII character set is as follows:

APPENDIX A: THE ASCII CHARACTER SET

0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
10 LF
11 VT
12 FF
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FC
29 GS
30 RS
31 US
32 SP
33 !
34 “

35 #
36 $
37 %
38 &
39 ‘
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 ’
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 Del

96

This page has been intentionally left blank.

97

The SmartMotor’stm language allows the programmer to access data on
the binary level. Understanding binary data is very easy and useful when
programming the SmartMotor or any electronic device. What follows is an
explanation of how binary data works.

All digital computer data is stored as binary information. A binary element
is one that has only two states, commonly described as “on” and “off” or
“one” and “zero”. A light switch is a binary element. It can either be “on”
or “off”. A computer’s memory is nothing but a vast array of binary switches
called “bits”.

The power of a computer comes from the speed and sophistication with which
it manipulates these bits to accomplish higher tasks. The first step towards
these higher goals is to organize these bits in such a way that they can
describe things more complicated than “off” or “on”.

Different numbers of bits are used to make up different building blocks of data.
They are most commonly described as follows:

 Four bits = Nibble
 Eight bits = Byte
 Sixteen bits = Word
 Thirty two bits = Long

One bit has two possible states, on or off. Every time a bit is added, the
possible number of states is doubled. Two bits have four possible states.
They are as follows:

 00 off-off
 01 off-on
 10 on-off
 11 on-on

A nibble has 16 possible states. A byte has 256 and a Long has billions
of possible combinations.

Because a byte of information has 256 possible states, it can reflect a number
from zero to 255. This is elegantly done by assigning each bit a value of twice
the one before it, starting with one. Each bit value becomes as follows:

 Bit Value
 0 1
 1 2
 2 4
 3 8
 4 16
 5 32
 6 64
 7 128

APPENDIX B: BINARY DATA

98

APPENDIX B: BINARY DATA

If all their values are added together the result is 255. By leaving particular
bits out any sum between zero and 255 can be created. Look at the following
example bytes and their decimal values:

 Byte Value

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1
 0 0 0 0 0 0 1 0 2
 0 0 0 0 0 0 1 1 3
 0 0 0 1 0 0 0 0 16
 1 0 0 0 0 0 0 0 128
 1 0 0 0 0 0 0 1 129
 1 1 1 1 1 1 1 1 255

Consider the following two bytes of information:

 Byte Value

 0 0 1 1 1 1 0 0 60
 0 0 0 1 1 1 1 0 30

To make use of the limited memory available with micro controllers that
can fit into a SmartMotor, there are occasions where every bit is used.
One example is the status byte. A single value can be uploaded from a
SmartMotor and have coded into it, in binary, eight or sixteen independent
bits of information.

The following is the status byte and its coded information:

 Name Description Bit Value

 Bo Motor OFF 7 128
 Bh Excessive temp. 6 64
 Be Excessive pos. err. 5 32
 Bw Wraparound 4 16
 Bi Index reportable 3 8
 Bm Real time neg. lim. 2 4
 Bp Real time pos. lim. 1 2
 Bt Trajectory going 0 1

There are two useful mathematical operators that work on binary data, the “&”
(and) and the ”|” (or). The “&” compares two bytes, words or longs and looks
for what they have in common. The resulting data has ones only where there
were ones in both the first byte and the second. The “|” looks for a one in the
same location of either the first data field or the second. Both functions are
illustrated in the following example:

 A B A&B A|B

 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 1

99

APPENDIX B: BINARY DATA

Knowing how the binary data works will enable shorter and faster code to be
written. The following are two code examples that are looking to see if both
limit inputs are high. One does this without taking advantage of the binary
operator while the second shows how using the binary operator makes the
code shorter, and therefor faster.

Example 1:

 IF Bm ‘Look for - lim high
 IF Bp ‘Loof for + lim high
 GOSUB100 ‘Execute subroutine
 ENDIF
 ENDIF

Example 2:

 IF S&6 ‘Look at both lim
 GOSUB100 ‘Execute subroutine
 ENDIF

Both examples will execute subroutine 100 if both limit inputs are high. By
“anding” the status byte (S) by six, the second routine filters out all of the other
status information. If either limit is high, then the result will be non-zero and
subroutine 100 will execute. Example two uses much less code than example
one and will run much faster as a part of a larger program loop.

The next two examples show how the use of the “|” operator can improve
program size and execution speed:

Example 3:

 IF UAI ‘Look for input A
 GOSUB200 ‘Execute subroutine
 ENDIF
 IF UBI ‘look for input B
 GOSUB200 ‘Execute subroutine
 ENDIF

Example 4:

 IF UAI|UBI ‘Look at both A,B
 GOSUB200 ‘Execute subroutine
 ENDIF

Both examples 3 and 4 accomplish the same task with different levels of
efficiency.

100

This page has been intentionally left blank.

101

 ! (exclamation point)

 (space) Single space between user variables

 @P Current position

 @PE Current position error

 @V Current velocity

 a . . . z User variables

 aa . . . zzz More user variables

 al[index] Array variable 32 bit

 aw[index] Array variable 16 bit

 ab[index] Array variable 8 bit

 A=exp Set acceleration

 ADDR Motor’s self address variable

 AIN{port}{channel} Assign input byte from module

 AMPS=expression Set PWM drive signal limit

 AOUT{port}{expression} Output analog byte to module

 Ba Over current status bit

 Bb Parity error status bit

 Bc Communication overflow status bit

 Bd Math overflow status bit

 Be Excessive position error status bit

 Bf Communications framing error status bit

 Bh Excessive temperature status bit

 Bi Index captured status bit

 Bk EEPROM data integrity status bit

 Bl Historical left limit status bit

 Bm Real time left limit status bit

 Bo Motor off status bit

 Bp Real time right limit status bit

 Br Historical right limit status bit

APPENDIX C: COMMANDS

102

 Bs Syntax error status bit

 Bt Trajectory in progress status bit

 Bu Array index error status bit

 Bv EEPROM locked state (obsolete)

 Bw Encoder wrap around status bit

 Bx Real time index inptut status bit

 BASE Cam encoder count cycle length

 BAUD Host communications control

 BRKENG Brake engage

 BRKRLS Brake release

 BRKSRV Brake without servo

 BRKTRJ Brake without trajectory

 BRKC Route Brake Sig. to I/O C (PLUS & ServoStep)

 BRKG Route Brake Sig. to I/O G (PLUS & ServoStep)

 BRKI Restore Brake to Internal (PLUS & ServoStep)

 BREAK Program execution flow control

 C# Program subroutine label

 CCHN{type}{channel} Close communications channel

 CHN0 RS-232 communications error flags

 CHN1 RS-485 communications error flags

 CLK Hardware clock variable

 CI Cam Mode Re-initialize (PLUS & ServoStep)

 CTR Second encoder/step and direction counter

 CX Current Cam Index value (PLUS & ServoStep)

 D=exp Set relative distance

 DEFAULT Switch-case structure element

 DIN{port}{channel} Input byte from module

 DOUT{port}{channel}{expression}
 Output byte to module

 E=expression Set allowable position error

 ECHO Echo input data back out main channel

APPENDIX C: COMMANDS

103

APPENDIX C: COMMANDS

 ECHO_OFF Stop echo main channel

 ECHO1 Echo input data back out second channel

 ECHO1_OFF Stop echo second channel

 ELSE If structure element

 ENC0 Select internal encoder for servo

 ENC1 Select external encoder for servo

 END End program

 ENDIF End IF statement

 EPTR=expression Set data EEPROM pointer

 ES400* Slow data EEPROM read/write speed

 ES1000* Increase data EEPROM read/write speed

 F Load filter

 F=expression Special functions control (See Appendix F)

 G Start motion (GO)

 GETCHR Get character from main comm channel

 GETCHR1 Get character from second comm channel

 GOSUB# Call a subroutine

 GOTO# Branch program execution to a label

 I (capital i) Hardware index position variable

 IF expression Conditional test

 KA=expression PID acceleration feed-forward

 KD=expression PID derivative compensation

 KG=expression PID gravity compensation

 KGOFF** PID gravity mode off

 KGON** PID gravity mode on

 KI=expression PID integral compensation

 KL=expression PID integral limit

 KP=expression PID proportional compensation

 KS=expression PID derivative term sample rate

 KV=expression PID velocity feed forward

*These commands
removed in PLUS
& ServoStep
Firmware. They
are obsolete in
V4.15 and above
fi rmware.

**These
commands
removed in PLUS
& ServoStep
Firmware.

104

 LEN Main comm chnl buffer fill level, data mode

 LEN1 Second comm chnl buffer fill level, data mode

 LIMD Enable directional constraints on limit inputs

 LIMH* Limit active high

 LIML* Limit active low

 LIMN* Restore non-directional limits

 LOAD Initiate program download to motor

 LOOP While structure element

 MC Enable cam mode

 MC2 Enable cam mode with position scaled x2

 MC4 Enable cam mode with position scaled x4

 MC8 Enable cam mode with position scaled x8

 MD Enable contouring mode

 MD50** Enable drive mode

 MF0 Set mode follow for variable only

 MF1 Configure follow hardware for x1 scaling

 MF2 Configure follow hardware for x2 scaling

 MF4 Configure follow hardware for x4 scaling

 MFDIV Mode follow with ratio divisor

 MFMUL Mode follow with ratio multiplier

 MFR Initiate mode follow ratio calculation

 MP Enable position mode

 MS Enable step and direction input mode

 MS0 Configure step and direction for variable only

 MSR Initiate mode step ratio calculation

 MT Enable torque mode

 MTB Mode Torque Brake (PLUS & ServoStep)

 MV Enable velocity mode

 O=expression Set origin

 OCHN Open main communications channel

APPENDIX C: COMMANDS

*These commands
removed in PLUS
& ServoStep
Firmware.

**This command
removed in PLUS
& ServoStep
Firmware.

105

 OFF Stop servoing the motor

 P=expression Set position

 PID1 Restore PID sample rate to default

 PID2 Divide PID sample rate by two

 PID4 Divide PID sample rate by four

 PID8 Divide PID sample rate by eight

 PRINT{expression} Print data to main comm channel

 PRINT1{expression} Print data to second comm channel

 PRINT{port}{expression} Print data to AniLink peripheral

 Q Report status in contouring mode

 Ra . . . Rz Report variables

 Raa . . . Rzz Report variables

 Raaa . . . Rzzz Report variables

 Rab[index] Report byte array variables (8-bit)

 Ral[index] Report long array variables (32-bit)

 Raw[index] Report word array variables (16-bit)

 RA Report acceleration

 RAIN{expression}{input} Report value from analog AniLink card

 RAMPS Report assigned max. drive PWM limit

 RBa Report over current status

 RBb Report parity error status

 RBc Report communications error status

 RBd Report user math overflow status

 RBe Report position error status

 RBf Report communications framing error status

 RBh Report overheat status

 RBi Report index status

 RBk Report EEPROM read/write status

 RBl Report historical left limit status

 RBm Report negative limit status

APPENDIX C: COMMANDS

106

 RBo Report motor off status

 RBp Report positive limit status

 RBr Report historical right limit status

 RBs Report program scan status

 RBt Report trajectory status

 RBu Report user array index status

 RBw Report wrap around status

 RBx Report hardware indexinput level

 RCHN Report combined communications status

 RCHN0 Report RS-232 communications status

 RCHN1 Report RS-485 communications status

 RCS Report RS-232 communications check sum

 RCS1 Report RS-485 communications check sum

 RCTR Report secondary counter

 RD Return buffered move distance value

 RDIN{port}{channel} Report value from digital AniLink card

 RE Report buffered maximum position error

 RETURN Return from subroutine

 RETURNF Ret from C1 Interrupt Sub (PLUS & ServoStep)

 RETURNI Ret from C2 Interrupt Sub (PLUS & ServoStep)

 RI Report last stored index position

 RKA Report buffered acceleration feed forward coef.

 RKD Report buffered derivative coefficient

 RKG Report buffered gravity coefficient

 RKI Report buffered integral coefficient

 RKL Report buffered integral limit

 RKP Report buffered proportional coefficient

 RKS Report buffered sampling interval

 RKV Report buffered velocity feed forward coefficient

 RMODE Report current mode of operation

APPENDIX C: COMMANDS

107

 RP Report present position

 RPE Report present position error

 RPW Report position and status

 RS Report status byte

 RT Report current requested torque

 RU Report all I/O (PLUS & ServoStep)

 RU{pin} Report digital I/O value (PLUS & ServoStep)

 RU{pin}A Report analog I/O value (PLUS & ServoStep)

 RUN Execute stored program

 RUN? Override automatic program execution

 RV Report velocity

 RW Report status word

 S (as command) Stop move in progress abruptly

 SADDR# Set motor to new address

 SILENT Suppress PRINT messages main channel

 SILENT1 Suppress PRINT messages second channel

 SIZE=expression Number of data entries in cam table

 SLD Disable Software Limits (PLUS & ServoStep)

 SLE Enable Software Limits (PLUS & ServoStep)

 SLEEP Initiate sleep mode main channel

 SLEEP1 Initiate sleep mode second channel

 SLN=<exp> Set Neg Software Limit (PLUS & ServoStep)

 SLP=<exp> Set Pos Software Limit (PLUS & ServoStep)

 STACK Reset nesting stack tracking

 SWITCH expression Program execution control

 T=expression Assign torque value in torque mode

 TALK Enable PRINT messages on main channel

 TALK1 Enable PRINT messages on main channel

 TEMP Temperature variable

 TH Sets high temperature set point

APPENDIX C: COMMANDS

108

 THD Sets temperature fault delay

 TWAIT Pause program during a move

 U 7 bit val of combined I/O (PLUS & ServoStep)

 UA=expression Set I/O A output

 UAA I/O A analog input value (0 to 1024)

 UAI (as command) Set I/O A to input

 UAI (as input value) I/O A input value variable

 UAO (as command) Set I/O A to output

 UB=expression Set I/O B output

 UBA I/O B analog input value (0 to 1024)

 UBI (as command) Set I/O B to input

 UBI (as input value) I/O B input value variable

 UBO (as command) Set I/O B to output

 UC=expression Set I/O C output

 UCA I/O C analog input value (0 to 1024)

 UCI (as command) Set I/O C to input

 UCI (as input value) I/O C input value variable

 UCO (as command) Set I/O C to output

 UCP (as command) Set I/O C to be a right limit input

 UD=expression Set I/O D output

 UDA I/O D analog input value (0 to 1024)

 UDI (as command) Set I/O D to input

 UDI (as input value) I/O D input value variable

 UDM (as command) Set I/O D to be a left limit input

 UDO (as command) Set I/O D to output

 UE=expression Set I/O E output

 UEA I/O E analog input value (0 to 1024)

 UEI (as command) Set I/O E to input

 UEI (as input value) I/O E input value variable

 UEO (as command) Set I/O E to output

APPENDIX C: COMMANDS

109

 UF=expression Set I/O F output

 UFA I/O F analog input value (0 to 1024)

 UFI (as command) Set I/O F to input

 UFI (as input value) I/O F input value variable

 UFO (as command) Set I/O F to output

 UG=expression Set I/O G output

 UGA I/O G analog input value (0 to 1024)

 UGA (as command) Set I/O G to G synchronous function

 UGI (as command) Set I/O G to input

 UGI (as input value) I/O G input value variable

 UGO (as command) Set I/O G to output

 UIA Read Current (Amps = UIA/100)

 UJA Read Voltage (Volts = UJA/10)

 UP Upload user EEPROM program contents

 UPLOAD Upload user EEPROM readable program

 V=expression Set maximum permitted velocity

 VLD Sequentially load variables from data EEPROM

 VST Sequentially store variables to data EEPROM

 WAIT=expression Suspends program for number of PID samples

 WAKE Terminate sleep mode main channel

 WAKE1 Terminate sleep mode second channel

 WHILE expression Conditional program flow command

 X Slow motor motion to stop

 Z Total system reset

 Za Reset current limit violation latch bit

 Zb Reset serial data parity violation latch bit

 Zc Reset communications buffer overflow latch bit

 Zd Reset math overflow violation latch bit

 Ze Reset zero pos error flag (PLUS & ServoStep)

 Zf Reset serial comm framing error latch bit

APPENDIX C: COMMANDS

110

 Zh Reset zero overheat flag (PLUS & ServoStep)

 Zl Reset historical left limit latch bit

 Zr Reset historical right limit latch bit

 Zs Reset command scan error latch bit

 Zu Reset user array index access latch bit

 Zw Reset encoder wrap around event latch bit

 ZS Reset system latches to power-up state

APPENDIX C: COMMANDS

111

 APPENDIX D: DATA VARIABLES MEMORY MAP

aw[0] is the most
signifi cant word of
al[0], and ab[0] is
the most signifi cant
byte of aw[0] and
al[0] (aka "aa").

112

APPENDIX D: DATA VARIABLES MEMORY MAP

Note that zzz is
used by the
SWITCH statement
and not available to
the user program
when SWITCH is
used.

APPENDIX D: DATA VARIABLES MEMORY MAP

113

MOVING BACK AND FORTH
About the most simple program that can be written is to set tuning parameters
and create an infinite loop that causes the motor to move back and forth. Make
note of the TWAIT commands used to pause program execution during the
moves.

KP=200 ‘Increase stiffness from default
KD=1000 ‘Increase dampening from default
F ‘Activate new tuning parameters
A=100 ‘Set maximum acceleration
V=1000000 ‘Set maximum velocity
MP ‘Set Position Mode
C10 ‘Place a label
 P=100000 ‘Set position
 G ‘Start motion
 TWAIT ‘Wait for move to complete
 P=0 ‘Set position
 G ‘Start motion
 TWAIT ‘Wait for move to complete
GOTO10 ‘Loop back to label 10
END ‘Obligatory END (never reached)

MOVING BACK AND FORTH WITH WATCH
The following example is identical to the previous, except that instead of paus-
ing program execution during the move with the TWAIT, a subroutine is used
to monitor for excessive load during the moves. This is an important distinction
insofar as most SmartMotor programs should have the ability to react to events
during motion.

KP=200 ‘Increase stiffness from default
KD=1000 ‘Increase dampening from default
F ‘Activate new tuning parameters
A=100 ‘Set maximum acceleration
V=1000000 ‘Set maximum velocity
MP ‘Set Position Mode
C10 ‘Place a label
 P=100000 ‘Set position
 G ‘Start motion
 GOSUB100 ‘Call wait subroutine
 P=0 ‘Set position
 G ‘Start motion
 GOSUB100 ‘Call wait subroutine
GOTO10 ‘Loop back to label 10
END ‘Obligatory END (never reached)

 APPENDIX E: EXAMPLE PROGRAMS

Remember that if
you are
programming a
ServoStep or a
SmartMotor with
PLUS fi rmware,
you will need to
connect the limit
switches OR enter
the following at or
near the top of the
program:
UCI
UDI
ZS

114

C100 ‘Subroutine 100
 ����� �t ‘Loop while trajectory in progress
 p=@PE ‘Record position error into variable
 p=p*p ‘Make absolute value
 IF p>10000 ‘Test for excessive load |@PE|>100
 PRINT("Excessive Load",#13) ‘Print warning
 ENDIF ‘End test
 L��P ‘Loop back to While during motion
RET�RN ‘Loop back to label 10

HOMING AGAINST A HARD STOP
Because the SmartMotor has the capability of lowering its own power level and
reading its position error, it can be programmed to gently feel for the end of
travel as a means to develop a consistent home position subsequent to each
power-up. The following program lowers the current limit, moves against a limit,
looks for resistance, declares and moves to a home just 100 counts inside the
hard limit. Machine reliability is heavily rooted in the process of eliminating
potential sources of failure, and eliminating a home switch and its associated
cable does well to leverage SmartMotor benefits toward increasing machine
reliability.

KP=200 ‘Increase stiffness from default
KD=1200 ‘Increase dampening from default
F ‘Activate new tuning parameters
AMPS=100 ‘Lower current limit to 10%
V=-10000 ‘Set maximum velocity
A=100 ‘Set maximum acceleration
MV ‘Set Velocity Mode
G ‘Start Motion
WHILE @PE>-100 ‘Loop while position error is small
LOOP ‘Loop back to WHILE
O=-100 ‘While pressed, declare home offset
S ‘Abruptly stop trajectory
MP ‘Switch to Positoin Mode
V=20000 ‘Set higher maximum velocity
P=0 ‘Set target position to be home
G ‘Start Motion
TWAIT ‘Wait for motion to complete
AMPS=1000 ‘Restore Current Limit to maximum
END ‘End Program

HOMING TO THE INDEX
SmartMotors have encodes with an index marker at one angle. This marker can
be useful in establishing repeatable startup positions. The following example
moves in the negative direction until the index marker is seen. It then deceler-
ates to a stop and reverses until it aligns with the index mark.

KP=200 ‘Increase stiffness from default
KD=1000 ‘Increase dampening from default

SmartMotors
present a unique
opportunity to
eliminate the
failure mode of a
faulty home switch
or cable.

aPPendix e: examPle Programs

115

F ‘Activate new tuning parameters
A=100 ‘Set maximum acceleration
V=1000000 ‘Set maximum velocity
MP ‘Set to Mode Position
D=20 ‘Move off in case on Index
G ‘Start Motion
TWAIT ‘Wait for motion to complete
i=I ‘Clear Index fl ag by read
D=-2020 ‘Set 1+ rev, specifi c to motor
G ‘Start Motion
WHILE Bi==0 ‘Wait for Index Flag to be true
LOOP ‘Loop back to Wait
X ‘Decelerate to stop
TWAIT ‘Wait for motion to complete
P=I ‘Set target position for Index
G ‘Start Motion
TWAIT ‘Wait for motion to complete
O=0 ‘Declare current position home
END ‘End Program

ANALOG VELOCITY
This example causes the SmartMotor's velocity to track an analog input. Analog
signals drift and dither, so a dead-band feature has been added to maintain a
stable velocity when the operator is not changing the signal. There is also a wait
feature to slow the speed of the loop.

KP=200 ‘Increase stiffness from default
KD=1000 ‘Increase dampening from default
F ‘Activate new tuning parameters
A=100 ‘Set maximum acceleration
MV ‘Set to Mode Velocity
d=10 ‘Analog Dead band, 1024 = Full Scale
o=512 ‘Offset to allow negative swings
m=40 ‘Multiplier for speed
w=10 ‘Time delay between reads
b=o ‘Set default a value
C10 ‘Label to create infi nite loop
 a=UCA-o ‘Take analog reading of C and offset
 x=a-b ‘Set x to determine change in input
 IF x>d ‘Check if change beyond deadband
 V=b*m ‘Multiplier for appropriate speed
 G ‘Initiate new velocity
 ELSEIF x<-d ‘Check if change beyond deadband
 V=b*m ‘Multiplier for appropriate speed
 G ‘Initiate new velocity
 ENDIF ‘End If statement
 b=a ‘Update b for prevention of hunting
 WAIT=w ‘Pause before next read
GOTO10 ‘Loop back to label
END ‘Obligatory END (never reached)

 APPENDIX E: EXAMPLE PROGRAMS

Set "D" equal to
20+ the encoder
resolution of the
particular
SmartMotor.
Typically, 17 and
23 sizes have 2000
counts per
revolution,
whereas 34 and
larger have 4000.
ServoStep typically
has 8000.

116

LONG TERM VARIABLE STORAGE
SmartMotors are equipped with a kind of solid-state disk drive called EEPROM
reserved just for long term data storage and retrieval. Data stored in the
EEPROM will remain even after power cycling, just like the SmartMotor's pro-
gram itself. EEPROM has limitations however. It cannot be written to more than
about one million times without being damaged. That may seem like a lot, but if
a write command (VST) is used in a fast loop, this number can be exceeded in
a short time. It is the responsibility of the programmer to see that the memory
limitations are considered. The following example is a subroutine to be called
whenever there is a limit contact. It presumes that the memory locations were
first seeded with zero.

C10 ‘Subroutine label
 EPTR=100 ‘Set EEPROM pointer in memory
 VLD (aa,2) ‘Load 2 long variables from EEPROM
 IF Br ‘If Right Limit, then...
 aa=aa+1 ‘Increment variable aa
 Zr ‘Reset Right Limit State Flag
 ENDIF
 IF Bl ‘If Left Limit, then...
 bb=bb+1 ‘Increment variable bb
 Zl ‘Reset Left Limit State Flag
 ENDIF
 EPTR=100 ‘Reset EEPROM pointer in memory
 VST(aa,2) ‘Store variables aa and bb
RETURN ‘Return to subroutine call

LOOK FOR ERRORS AND PRINT THEM
This code example looks at different error status bits and prints appropriate
error information to the RS-232 channel.

C10 ‘Subroutine label
 IF Be ‘Check for Position Error
 PRINT("Position Error", #13)
 ENDIF
 IF Bh ‘Check for Over Temp Error
 PRINT("Over Temp Error",#13)
 ENDIF
 IF Bi ‘Check for Over Current Error
 PRINT("Over Current Error",#13)
 ENDIF
RETURN ‘Return to subroutine call

CHANGING SPEED UPON DIGITAL INPUT
SmartMotors have digital I/O that can be used for many purposes. In this exam-
ple, a position move is started and the speed is increased by 50% if input A goes
low.

KP=200 ‘Increase stiffness from default

This example is
a subroutine. It
would be called
with the command
GOSUB10.

aPPendix e: examPle Programs

117

KD=1000		 	 	 ‘Increase dampening from default
F	 	 	 	 	 	 ‘Activate new tuning parameters
UAI	 	 	 	 	 ‘Set I/O A to input (default)
A=100		 	 	 	 ‘Set maximum acceleration
V=100000		 	 	 ‘Set maximum velocity
P=1000000	 	 	 ‘Set final position

MP		 		 	 	 ‘Set Position Mode
G	 	 		 	 	 ‘Start motion
WHILE Bt		 	 	 ‘Loop while motion continues
 if uai==0	 	 ‘If input is low
 if V==100000	‘Check V so change happens once
 v=150000	 ‘Set new velocity

 G		 	 	 ‘Initiate new velocity
 ENDIF	 	 	
 ENDIF		 	 	
LOOP	 	 	 	 	 ‘Loop back to WHILE
END	 	 	 	 	 ‘Obligatory END

Pulse output upon a given position
It is often necessary to fire an output upon a certain position. There are many
ways to do this with a SmartMotor. This example sets I/O B as an output while
first making sure it comes up 1 by presetting the output value, then watches the
encoder position until it exceeds 250000.

KP=200	 	 	 	 ‘Increase stiffness from default
KD=1000		 	 	 ‘Increase dampening from default
F	 	 	 	 	 	 ‘Activate new tuning parameters
UB=1	 	 	 	 	 ‘Preset future output value
UBO	 	 	 	 	 ‘Set I/O B to output, high
A=100		 	 	 	 ‘Set maximum acceleration
V=1000000	 	 	 ‘Set maximum velocity
P=1000000	 	 	 ‘Set final position
MP		 	 	 	 	 ‘Set Position Mode
G	 	 	 	 	 	 ‘Start motion
WHILE @p<250000	 ‘Loop while motion continues
LOOP	 	 	 	 	 ‘If input is low
UB=0	 	 	 	 	 ‘Check V so change happens once
wait 400		 	 	 ‘Set new velocity
UB=1	 	 	 	 	 ‘Initiate new velocity
END	 	 	 	 	 ‘Obligatory END

stop motion if voltage drops
The Voltage, Current and Temperature of a SmartMotor are always known
and can be used within a program to react to changes. In this program, the
SmartMotor begins a move and then stops motion if the voltage falls below 18.5

Appendix E: Example Programs

118

volts.

KP=200	 	 	 	 ‘Increase stiffness from default
KD=1000		 	 	 ‘Increase dampening from default
F	 	 	 	 	 	 ‘Activate new tuning parameters
A=100		 	 	 	 ‘Set maximum acceleration
V=100000		 	 	 ‘Set maximum velocity
P=1000000	 	 	 ‘Set final position
MP		 	 	 	 	 ‘Set Position Mode
G	 	 	 	 	 	 ‘Start motion
WHILE Bt		 	 	 ‘Loop while motion continues
 if UJA<185	 	 ‘If voltage is below 18.5 Volts
 OFF		 	 	 ‘Turn motor off
 ENDIF		 	 	
LOOP	 	 	 	 	 ‘Loop back to WHILE
END	 	 	 	 	 ‘Obligatory END

Measuring command execution time
This routine will measure the time of a basic loop, then measure the time of a
basic loop with an additional command (to be chosen for measure). It will finally
subtract out the main loop time and report the actual execution time of the com-
mand inserted in the second loop. This program can be run during motion or
servoing to show how the execution times vary. The PID loop and Trajectory
generator have priority so when they are heavily loaded, program execution
time is what gives. There is some margin of error. Even two identical loops
can operate at slightly different rates due to how different segments of memory
and their boundaries are treated. Note also that the PID2 and PID4 commands
dramatically increase program execution speed.

t=0			 ‘Calibration loop, to get basic loop time
c=CLK			 ‘Store the running clock value
WHILE t<1000	 ‘Loop 1,000 times
 t=t+1
LOOP
c=CLK-c		 ‘c=execution time in sample periods per
				 ‘ 1000 operations
c=c*1000		 ‘Go from sample periods per 1k ops to
				 ‘ sample periods per 1M ops.
d=c/4069		 ‘Divide by sample time to get seconds
				 ‘ per 1M operations.
t=0			 ‘Now run the actual measuring loop
c=CLK
WHILE t<1000
 t=t+1
 ‘PUT COMMAND TO BE TIME-MEASURED HERE
LOOP

appendix E: Example Programs

Double Space
indentation within
conditional
statements or
loops make
programs
significantly more
readable.

119

c=CLK-c
c=c*1000
c=c/4069
c=c-d ‘Subtract off the main loop time
Rc ‘Report the actual time, in MicroSeconds
 ‘ the command takes to execute
END ‘End program

CUSTOM PARSER WITH CHECKSUM
This is an example parser. It reopens the main communications port for data
input only. The program takes over command interpretation. It is configured
to take an ASCII command that can optionally be followed by up to four
ASCII numbers separated by commas and finally a checksum value identified
by a preceding “~”. The program keeps a running checksum which is
used for two purposes, for command differentiation and also to verify proper
communications. The Checksum is multiplied by 2 before each additional
character value is added. This provides a more reliably unique value. This
program example leaves single letter variables available to the application,
except for “p” and “q”. Only single letter variables can be used as pointers
(between brackets []). This parses very slowly in "Series 4" SmartMotors and
is not recomended for time critical applications.

SADDR1 ‘Always a good idea to declare an address
ECHO_OFF ‘Assure character Echo Mode is off
PID4 ‘Slow PID to 1kHz to up program speed
KP=100 ‘Set PID Proportional Gain, diff for PID4
KD=500 ‘Set PID Derivative Gain, diff for PID4
F ‘Update Filter
A=1600 ‘Set default acc (extra high - PID4)
V=4000000 ‘Set default vel (4x because of PID4)
MP ‘Ensure Mode-Position
mm=1 ‘Initialize Minus Flag to one
ss=0 ‘Initialize Main Checksum
tt=0 ‘Initialize Command-Only Checksum
nn=0 ‘Initialize Input Number to zero
yy=0 ‘Initialize Incoming Checksum Flag
zz=0 ‘Initialize Incoming Checksum to zero
al[0]=0 ‘Initialize Input Num array-uses aa space
al[1]=0 ‘Initialize Input Num array-uses bb space
al[2]=0 ‘Initialize Input Num array-uses cc space
al[3]=0 ‘Initialize Input Num array-uses dd space
p=0 ‘Initialize Input Number pointer
q=104 ‘Initialize Incoming Cmd Record Pointer
ab[q]=0 ‘Init first byte of Incomming Cmd Record
 ‘ 104 is the memory location of “aaa”.
 ‘ 104 to 203 are available byte slots

 APPENDIX E: EXAMPLE PROGRAMS

120

 ‘ from aaa to yyy.
OCHN(RS2,0,N,9600,1,8,D) ‘Open comm port as Data
C10 ‘Place a label to create main loop
 IF LEN ‘Check if something in input buffer.
 vv=GETCHR ‘Input character from buffer
 IF yy==0 ‘Advance Checksum
 ss=ss*2 ‘Shift checksum for more security
 ss=ss+vv ‘Add input byte to checksum
 ab[q]=vv ‘Record Incoming Command
 q=q+1 ‘Increment Record Incoming Cmd Ptr
 ab[q]=0 ‘Clear next position
 ENDIF
 IF vv<33 ‘Change to vv==13 for non SMI
 ‘ terminal testing.
 IF yy ‘If Incoming Checksum Flag set
 zz=nn ‘Store Incoming Checksum in zz
 ELSEIF nn
 al[p]=nn*mm ‘Store Input Number into array
 nn=0 ‘Zero Input Number
 ENDIF
 SWITCH tt ‘Identify specific incoming command
 CASE 1173 ‘MOVE
 GOSUB100
 BREAK
 CASE 1214 ‘STAT
 GOSUB200
 BREAK
 CASE 500 ‘END
 GOSUB300
 BREAK
 CASE 1239 ‘ZERO
 GOSUB400
 BREAK
 DEFAULT ‘Anything Else
 GOSUB500
 BREAK
 ENDS
 ss=0 ‘Reset Main Checksum
 tt=0 ‘Reset Command-Only Checksum
 al[0]=0 ‘Zero Input Num array-uses aa space
 al[1]=0 ‘Zero Input Num array-uses bb space
 al[2]=0 ‘Zero Input Num array-uses cc space
 al[3]=0 ‘Zero Input Num array-uses dd space
 p=0 ‘Zero Input Number Pointer

AN

The PRINT
statements are
useful in
debugging, but
would most likely
be removed in the
fi nal application.

Remove the fi rst
comment marks
when you are
ready to test the
checksum feature.

aPPendix e: examPle Programs

121

 nn=0 ‘Be sure Input Number is zero
 mm=1 ‘Be sure mm sign flag is set to +
 yy=0 ‘Init Incoming Checksum Flag to 0
 zz=0 ‘Init Incoming Checksum to 0
 q=104 ‘Init Incoming Cmd Record Pointer
 ab[q]=0 ‘Init byte 1 Incomming Cmd Record
 ELSEIF vv==44 ‘If there is a comma
 al[p]=nn*mm ‘Store Input Number into array
 nn=0 ‘Zero Input Number
 p=p+1 ‘Increment Input Number Pointer
 mm=1 ‘Restore mm sign flag to positive
 ELSEIF vv==126 ‘Tilde peceding Checksum value
 al[p]=nn*mm ‘Store Input Number into array
 ‘ (if there is one)
 nn=0 ‘Zero Input Number
 p=p+1 ‘Increment Input Number Pointer
 mm=1 ‘Restore mm sign flag to positive
 yy=1 ‘Set Incoming Checksum flag
 ELSE
 IF vv>65 ‘Look for ASCII text
 IF vv<123 ‘Build up Command here
 tt=ss ‘Update Cmd Checksum for Parser
 ENDIF
 ELSEIF vv<58 ‘Look for ASCII numeric digits
 IF vv>44 ‘Build up number here
 IF vv==45 ‘Remember preceding - sign
 mm=-1 ‘Set flag to change number to -
 ELSE ‘Build number
 nn=nn*10 ‘Shift previous number by 10
 uu=vv-48 ‘Cnvrt ASCII to val from 0-9
 nn=nn+uu ‘Add to prev num to build it
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
GOTO10 ‘Loop back to main label forever

C100 ‘MOVE - can be followed by a number to
 ‘ move to and optionally followed by a
 ‘ new Velocity and Acceleration,
 ‘ seperated by commas.
 PRINT(“MOVING TO: “,al[0],#13)
 PRINT(“P”,al[0],” V”,al[1],” A”,al[2],#13)

 APPENDIX E: EXAMPLE PROGRAMS

 PRINT(“CCS: “,tt,#13) ‘Print Command Checksum
 ‘ (for development)
 PRINT(“TCS: “,ss,#13) ‘Print Total Checksum
 ‘ (for development)
 PRINT(“ICS: “,zz,#13) ‘Print Incomming Checksum
 ‘ (for development)
‘ IF ss==zz ‘Engage this code to activate
 ‘ Checksum Security
 P=al[0] ‘Set Position to first input number
 IF al[1]>0 ‘If Vel is positive and non-zero
 V=al[1] ‘Set Velocity
 ENDIF
 IF al[2]>0 ‘If Acc is positive and non-zero
 A=al[2] ‘Set Acceleration
 ENDIF
 G
‘ ELSE ‘Engage this code to activate
 ‘ Checksum Security
‘ PRINT(“CHECKSUM ERROR, TCS:”,ss,” ICS:”,zz,#13)
‘ q=104 ‘Point to first char of Command
‘ PRINT(“CMD: “) ‘Prep to print errant command
‘ WHILE ab[q] ‘Loop until entire cmd printed
‘ PRINT(ab[q])
‘ q=q+1
‘ LOOP
‘ PRINT(#13)
‘ ENDIF ‘Engage this code to activate
 ‘ Checksum Security
RETURN

C200 ‘STAT
 PRINT(“STAT: “)
 RS
 PRINT(#13)
 PRINT(“CCS: “,tt,#13) ‘Print Command Checksum
 PRINT(“TCS: “,ss,#13) ‘Print Total Checksum
 PRINT(“ICS: “,zz,#13) ‘Print Incomming Checksum
RETURN

C300 ‘END
 PRINT(“ENDING...”,#13)
 PRINT(“CCS: “,tt,#13) ‘Print Command Checksum
 PRINT(“TCS: “,ss,#13) ‘Print Total Checksum
 PRINT(“ICS: “,zz,#13) ‘Print Incomming Checksum

aPPendix e: examPle Programs

122

123

 APPENDIX E: EXAMPLE PROGRAMS

 OFF ‘Turn the servo off
 OCHN(RS2,0,N,9600,1,8,C) ‘Restore cmd interp.
 END
RETURN

C400 ‘ZERO
 PRINT(“ZEROING”,#13)
 PRINT(“CCS: “,tt,#13) ‘Print Command Checksum
 PRINT(“TCS: “,ss,#13) ‘Print Total Checksum
 PRINT(“ICS: “,zz,#13) ‘Print Incomming Checksum
 O=al[0] ‘Reset origin, if al[0]
 ‘ was not set, then
 ‘ default zero
RETURN

C500 ‘Unrecognized or NEW commands
 PRINT(“ERROR”,#13)
 PRINT(“CCS: “,tt,#13) ‘Parser value calculator
 ‘ for new commands.
 ‘ This will show the
 ‘ SWITCH value for any
 ‘ new command
 PRINT(“TCS: “,ss,#13) ‘Print Total Checksum
 PRINT(“ICS: “,zz,#13) ‘Print Incomming Checksum
RETURN
END ‘All programs must have an END, even if it
 ‘ is never reached

Using a command interpreter such as this is much slower than simply
working with the built-in interpreter, nevertheless, it is sometimes necessary,
particularly in retrofitting legacy systems. The SmartMotor can keep track of
the actual checksum of incoming commands and data, and of text printed out,
but it cannot know the checksum of data printed out because the Binary to ASCII
conversion happens within the PRINT statement and the SmartMotor does not
support a PRINT to an internal array. The SmartMotor standard interpreter has
the “RCS” command to support checksum based communications security.

124

APPENDIX E: EXAMPLE PROGRAMS

This page has been intentionally left blank.

125

APPENDIX F: F= COMMANDS

For purposes of efficiency, the SmartMotor utilizes a byte of memory (8 bits) for
the setting of certain modes. The byte if accessed through the F= command.
Because of its Binary nature, bits must be set and cleared with an understand-
ing of how Binary works. If you want help understanding binary data, please
refer to Appendix A, or for just the facts relevant to F=, refer to the end of this
section.

Not all F= bit controlled modes relate to each other, but still, here is the total list
for reference (in one place):

 F=1 Causes the motor to decelerate to a stop upon the trigger
 of a soft or hard limit, whereas the default action is to simply
 turn the amplifier off and allow the motor to free wheel (PLUS
 & ServoStep only).

 F=2 Reverses the shaft direction. All shaft motion commands
 and modes will cause motion in the opposite direction they
 would have otherwise (PLUS & ServoStep only).

 F=4 Redirects user program prints and report commands to
 channel 1 rather than the main communications port, channel 0.

 F=8 Causes the PID integral term to clear at the end of each
 trajectory. This eliminates what is referred to as "wind up"
 and can be useful in some applications.

 F=16 Causes CAM mode to use Relative Positioning (PLUS &
 ServoStep only).

 F=32 Causes faults to call subroutine C1 (PLUS & ServoStep only).

 F=64 Makes low transitions of port G trigger subroutine C2 (PLUS
 & ServoStep only).

 F=128 Resets the value of "@P", "RP" and external counter "CTR"
 to zero at modulo "BASE" plus dwell "D" in Relative Cam
 Mode (PLUS & ServoStep only).

The best way to load F= is with a shadow variable, like "f" for example. To set
bit value 8, you could issue the command "F=8", but what you would also be
doing is clearing all of the other bits of F=. A better way is to issue these com-
mands:

 f=f|8 ‘Set F=8 bit in the shadow variable

 F=f ‘Set the F= byte

The above example sets bit value 8 without disturbing the others.

Clearing bit 8 is a bit more convoluted. The bit value must first be subtracted
from the maximum byte value of 255. For example 255 - 8 = 247. By "anding"
the shadow variable with 247, all bits will remain except for bit value 8. Here is
how that would be done:

 f=f&247 ‘Set F=32 bit in the shadow variable

See Appendix B
to get a better
understanding of
Binary Data

126

 F=f ‘Set the modes into action

The above example "ands" everything except the bit value 8 with ones. If they
were ones to begin with, they will remain ones, and if they were zeros to begin
with, they will remain zeros. Furthermore, bit value 8 will be anded with zero
and become zero, turning off the 8 position feature.

APPENDIX F: F= COMMANDS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

